The Herschel view of star formation in the Rosette molecular cloud under the influence of NGC 2244

The Rosette molecular cloud is promoted as the archetype of a triggered star-formation site. This is mainly due to its morphology, because the central OB cluster NGC 2244 has blown a circular-shaped cavity into the cloud and the expanding HII-region now interacts with the cloud. Studying the spatial distribution of the different evolutionary states of all star-forming sites in Rosette and investigating possible gradients of the dust temperature will help to test the 'triggered star-formation' scenario in Rosette. We use continuum data obtained with the PACS (70 and 160 micron) and SPIRE instruments (250, 350, 500 micron) of the Herschel telescope during the Science Demonstration Phase of HOBYS. Three-color images of Rosette impressively show how the molecular gas is heated by the radiative impact of the NGC 2244 cluster. A clear negative temperature gradient and a positive density gradient (running from the HII-region/molecular cloud interface into the cloud) are detected. Studying the spatial distribution of the most massive dense cores (size scale 0.05 to 0.3 pc), we find an age-sequence (from more evolved to younger) with increasing distance to the cluster NGC 2244. No clear gradient is found for the clump (size-scale up to 1 pc) distribution. The existence of temperature and density gradients and the observed age-sequence imply that star formation in Rosette may indeed be influenced by the radiative impact of the central NGC 2244 cluster. A more complete overview of the prestellar and protostellar population in Rosette is required to obtain a firmer result.

[1]  P. Andre',et al.  The Herschel View of Star Formation , 2012, Proceedings of the International Astronomical Union.

[2]  R. Klessen,et al.  The link between molecular cloud structure and turbulence , 2010, 1001.2453.

[3]  M. Sauvage,et al.  Initial highlights of the HOBYS key program, the Herschel imaging survey of OB young stellar objects , 2010 .

[4]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[5]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[6]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[7]  M. Sauvage,et al.  Small-scale structure in the Rosette molecular cloud revealed by Herschel , 2010, 1005.3784.

[8]  E. Feigelson,et al.  A CHANDRA STUDY OF THE ROSETTE STAR-FORMING COMPLEX. II. CLUSTERS IN THE ROSETTE MOLECULAR CLOUD , 2009, 0903.5493.

[9]  T. Jenness,et al.  A large‐scale CO survey of the Rosette Molecular Cloud: assessing the effects of O stars on surrounding molecular gas , 2009, 0902.4138.

[10]  T. Naab,et al.  DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION , 2009, 0901.2113.

[11]  Jonathan P. Williams,et al.  A Spitzer survey of young stellar objects in the Rosette Molecular Cloud , 2008 .

[12]  E. Lada,et al.  A FLAMINGOS Deep Near-Infrared Imaging Survey of the Rosette Complex. I. Identification and Distribution of the Embedded Population , 2007, 0709.3004.

[13]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[14]  Jonathan P. Williams,et al.  Turbulent Gas Flows in the Rosette and G216-2.5 Molecular Clouds: Assessing Turbulent Fragmentation Descriptions of Star Formation , 2005, astro-ph/0511441.

[15]  A. Zavagno,et al.  Triggered massive-star formation on the borders of Galactic HII regions , 2005, Proceedings of the International Astronomical Union.

[16]  Jin Zeng Li,et al.  Discovery of Multiseeded Multimode Formation of Embedded Clusters in the Rosette Molecular Complex , 2005, astro-ph/0504011.

[17]  A. Zavagno,et al.  Triggered massive-star formation on the borders of Galactic H II regions I. A search for "collect and collapse" candidates , 2004, astro-ph/0412602.

[18]  E. Lada,et al.  Spatial Distribution of Embedded Clusters in the Rosette Molecular Cloud: Implications for Cluster Formation , 1997 .

[19]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[20]  N. Patel,et al.  Cometary globules in the southeast quadrant of the Rosette nebula , 1993 .

[21]  A. H. Barrett,et al.  The formation of Elephant Trunk globules in the Rosette nebula: CO observations. , 1980 .

[22]  G. A. Gary,et al.  An internal velocity study of the Rosette Nebula , 1979 .

[23]  C. Lada,et al.  Sequential formation of subgroups in OB associations , 1977 .