Some recent advances in nanostructure preparation from gold and silver particles: a short topical review

Recent developments in nanostructure self-assembly from gold and silver particles are reviewed. A brief historical background of the field is given, followed by a selection of topics which are of particular current interest. An overview of the preparation of thiol-stabilised gold and silver nanoparticles and their spontaneous self-organisation into well-ordered superlattices is presented. Distance-dependent metal insulator transitions in ensembles of nanoparticles are discussed, along with a previously unpublished measurement of optical properties of dithiol-linked thin films of gold nanoparticles. Recent approaches to more complex nano-architectures are reviewed, including the use of various templates and of DNA base pair recognition. Some aspects of nanoscopic surface chemistry of gold particles including the evolution of molecular recognition sites are reviewed. Current and potential future applications are discussed.

[1]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[2]  M. Brust,et al.  Novel gold‐dithiol nano‐networks with non‐metallic electronic properties , 1995 .

[3]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[4]  J. Heath,et al.  Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling , 1998 .

[5]  Emily K. Warmoth,et al.  Gateway Reactions to Diverse, Polyfunctional Monolayer-Protected Gold Clusters , 1998 .

[6]  James E. Hutchison,et al.  Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters , 1995 .

[7]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[8]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[9]  Lifeng Chi,et al.  Metal Clusters and Colloids , 1998 .

[10]  Vincent M. Rotello,et al.  Self-assembly of nanoparticles into structured spherical and network aggregates , 2000, Nature.

[11]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[12]  Chad A. Mirkin,et al.  DNA-Directed Synthesis of Binary Nanoparticle Network Materials , 1998 .

[13]  M. Pileni,et al.  Nanosized Particles Made in Colloidal Assemblies , 1997 .

[14]  Junichi Higo,et al.  Size-Dependent Separation of Colloidal Particles In Two-Dimensional Convective Self-Assembly , 1995 .

[15]  D. Fitzmaurice,et al.  Carbon Nanotube Templated Self‐Assembly and Thermal Processing of Gold Nanowires , 2000 .

[16]  Vincent M. Rotello,et al.  Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds , 2000 .

[17]  U. Landman,et al.  Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies , 1996 .

[18]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[19]  R. Murray,et al.  Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules , 1999 .

[20]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[21]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[22]  Ralph G. Nuzzo,et al.  ADSORPTION OF BIFUNCTIONAL ORGANIC DISULFIDES ON GOLD SURFACES , 1983 .

[23]  George C. Schatz,et al.  DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties , 2000 .

[24]  M. Brust,et al.  Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters , 1998, Nature.

[25]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[26]  M. Brust,et al.  Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties , 1998 .

[27]  M. Brust,et al.  C60 Mediated Aggregation of Gold Nanoparticles , 1998 .

[28]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[29]  W. Caseri,et al.  Oriented pearl-necklace arrays of metallic nanoparticles in polymers : a new route toward polarization-dependent color filters , 1999 .

[30]  R. Murray,et al.  Poly-hetero-ω-functionalized Alkanethiolate-stabilized gold cluster compounds , 1997 .

[31]  J. V. Sanders Close-packed structures of spheres of two different sizes I. Observations on natural opal , 1980 .

[32]  David J. Schiffrin,et al.  Nanotechnology and nucleotides , 1996, Nature.

[33]  Arthur W. Snow,et al.  Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor , 1998 .

[34]  G. Schmid Clusters and Colloids , 1994 .

[35]  I. Lakatos,et al.  Colloids Surfaces A: Physicochem , 1998 .

[36]  R. Murray,et al.  Monolayers in Three Dimensions: Synthesis and Electrochemistry of ω-Functionalized Alkanethiolate-Stabilized Gold Cluster Compounds , 1996 .

[37]  C. Foss,et al.  Dichroic Thin Layer Films Prepared from Alkanethiol-Coated Gold Nanoparticles , 1997 .

[38]  L. Demers,et al.  Structure and Chain Dynamics of Alkanethiol-Capped Gold Colloids , 1996 .

[39]  K. Hashimoto,et al.  Binary cooperative complementary nanoscale interfacial materials , 2000 .

[40]  Christopher J. Kiely,et al.  From monolayers to nanostructured materials: an organic chemist's view of self-assembly , 1996 .

[41]  J. V. Sanders,et al.  Ordered arrangements of spheres of two different sizes in opal , 1978, Nature.

[42]  Louis A. Cuccia,et al.  Self‐Assembled Monolayers on Gold Nanoparticles , 1996 .

[43]  Françoise Remacle,et al.  Architectonic Quantum Dot Solids , 1999 .

[44]  D. Schiffrin,et al.  Self-Organization of Nanosized Gold Particles , 1998 .

[45]  Stephen D. Evans,et al.  Vapour sensing using hybrid organic-inorganic nanostructured materials , 2000 .

[46]  David J. Schiffrin,et al.  A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups , 2000, Nature.

[47]  W. Tremel,et al.  Colloid-Bound Catalysts for Ring-Opening Metathesis Polymerization: A Combination of Homogenous and Heterogeneous Properties. , 1998, Angewandte Chemie.

[48]  Andrés,et al.  Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. , 1995, Physical review. B, Condensed matter.

[49]  James R. Heath,et al.  PRESSURE/TEMPERATURE PHASE DIAGRAMS AND SUPERLATTICES OF ORGANICALLY FUNCTIONALIZED METAL NANOCRYSTAL MONOLAYERS: THE INFLUENCE OF PARTICLE SIZE, SIZE DISTRIBUTION, AND SURFACE PASSIVANT , 1997 .

[50]  R. Murray,et al.  Mediated Electrocatalysis with Polyanthraquinone-Functionalized Monolayer-Protected Clusters , 1999 .

[51]  M. Mrksich,et al.  Catalytic Asymmetric Dihydroxylation by Gold Colloids Functionalized with Self-Assembled Monolayers , 1999 .

[52]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[53]  J W Mellor,et al.  A comprehensive treatise on inorganic and theoretical chemistry vol.VIII N, Cl , 1922 .

[54]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[55]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[56]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[57]  G. Schmid,et al.  The Complexation of Gold Colloids , 1989 .

[58]  B. Korgel,et al.  Assembly and Self-Organization of Silver Nanocrystal Superlattices: Ordered “Soft Spheres” , 1998 .

[59]  D. Ohlberg,et al.  Individual and Collective Electronic Properties of Ag Nanocrystals , 1999 .

[60]  L. Demers,et al.  Structure and Dynamics in Alkanethiolate Monolayers Self-Assembled on Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study , 1997 .

[61]  R. Murray,et al.  Redox and fluorophore functionalization of water-soluble, Tiopronin- protected gold clusters , 1999 .

[62]  L. Gunnarsson,et al.  A self-assembled single-electron tunneling transistor , 1999 .

[63]  A. Bard,et al.  Fabrication and characterization of self-assembled spherical gold ultramicroelectrodes. , 1997, Analytical chemistry.

[64]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[65]  L. Demers,et al.  Gold−Sulfur Interactions in Alkylthiol Self-Assembled Monolayers Formed on Gold Nanoparticles Studied by Solid-State NMR , 1997 .

[66]  Schmid,et al.  Naked Au55 clusters: dramatic effect of a thiol-terminated dendrimer , 2000, Chemistry.

[67]  U. Simon,et al.  The Application of Au55 Clusters as Quantum Dots , 1993 .

[68]  Christopher J. Kiely,et al.  Ordered Colloidal Nanoalloys , 2000 .

[69]  B. Dunn,et al.  Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals , 1997 .

[70]  Stephen Mann,et al.  Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization , 1999, Nature.

[71]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[72]  A. M. Alvarez,et al.  Crystal Structures of Molecular Gold Nanocrystal Arrays , 1999 .

[73]  T. L. Morkved,et al.  Selective Decoration of a Phase-Separated Diblock Copolymer with Thiol-Passivated Gold Nanocrystals , 1998 .