Graph cut based segmentation of convoluted objects

Fundamental to any graph cut segmentation methods is the assignment of edge weights. The existing solutions typically use gaussian, exponential or rectangular cost functions with a parameter chosen in an ad-hoc fashion. We demonstrate the importance of the shape of the cost function in images of convoluted shaped objects. Our asymptotical analysis and empirical results show that the gaussian cost function outperforms the rectangular and exponential cost functions. For the gaussian cost function we construct a theoretical framework to determine the optimal value of its parameter based on the image data and shape complexity.

[1]  Ning Xu,et al.  Object segmentation using graph cuts based active contours , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Yizhou Yu,et al.  Two-Level Image Segmentation Based on Region and Edge Integration , 2003, DICTA.

[5]  M. Pavan,et al.  A new graph-theoretic approach to clustering and segmentation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[6]  Michael Werman,et al.  Stochastic image segmentation by typical cuts , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[7]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Olga Veksler,et al.  Image segmentation by nested cuts , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[9]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  Sandra McIntyre The Health Education Assets Library (HEAL) , 2003 .