Derandomizing an Output-sensitive Convex Hull Algorithm in Three Dimensions
暂无分享,去创建一个
[1] R. Seidel. A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .
[2] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[3] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[4] Herbert Edelsbrunner,et al. An O(n log² h) Time Algorithm for the Three-Dimensional Convex Hull Problem , 1991, SIAM J. Comput..
[5] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[6] Raimund Seidel,et al. Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.
[7] David G. Kirkpatrick,et al. The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..
[8] Jirí Matousek,et al. Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.
[9] Nimrod Megiddo,et al. Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.
[10] Jirí Matousek. Linear Optimization Queries , 1993, J. Algorithms.
[11] B. Chazelle. Editor's Foreword (Special Issue on the ACM Symposium). , 1989 .
[12] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[13] Martin E. Dyer,et al. Linear Time Algorithms for Two- and Three-Variable Linear Programs , 1984, SIAM J. Comput..
[14] Jirí Matousek,et al. Efficient partition trees , 1991, SCG '91.