Oxide nanowire arrays for energy sciences

[1]  Chen Xu,et al.  Planar waveguide-nanowire integrated three-dimensional dye-sensitized solar cells. , 2010, Nano letters.

[2]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[3]  H. L. Tam,et al.  GaN/ZnO nanorod light emitting diodes with different emission spectra , 2009, Nanotechnology.

[4]  Michio Kondo,et al.  Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2∕ZnO antireflection coating , 2006 .

[5]  U. Gibson,et al.  Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures , 2007 .

[6]  Melanie J. Kirkham,et al.  Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process , 2007 .

[7]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[8]  Zhong Lin Wang,et al.  Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments. , 2009, ACS nano.

[9]  J. Ouyang,et al.  Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates , 2006 .

[10]  H. Morkoç,et al.  Forward-current electroluminescence from GaN/ZnO double heterostructure diode , 2005 .

[11]  David J. Binks,et al.  Room‐Temperature Lasing Observed from ZnO Nanocolumns Grown by Aqueous Solution Deposition. , 2002 .

[12]  G. Jung,et al.  Enhancement of Light Extraction Through the Wave‐Guiding Effect of ZnO Sub‐microrods in InGaN Blue Light‐Emitting Diodes , 2010 .

[13]  Jun Hee Lee,et al.  Fatigue and retention in ferroelectric Y‐Ba‐Cu‐O/Pb‐Zr‐Ti‐O/Y‐Ba‐Cu‐O heterostructures , 1992 .

[14]  Dechun Zou,et al.  Preparation of free-standing nanowire arrays on conductive substrates. , 2004, Journal of the American Chemical Society.

[15]  A. Govindaraj,et al.  Inorganic Nanotubes and Nanowires , 2010 .

[16]  Jinhui Song,et al.  Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices , 2007 .

[17]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[18]  Hiroto Sekiguchi,et al.  Ultraviolet GaN‐based nanocolumn light‐emitting diodes grown on n‐(111) Si substrates by rf‐plasma‐assisted molecular beam epitaxy , 2008 .

[19]  H. Ohno,et al.  Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO , 2004 .

[20]  Zhong Lin Wang,et al.  Carrier density and Schottky barrier on the performance of DC nanogenerator. , 2008, Nano letters.

[21]  Margaret A. K. Ryan,et al.  CdSe‐Sensitized p‐CuSCN/Nanowire n‐ZnO Heterojunctions , 2005 .

[22]  Yaguang Wei,et al.  Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. , 2009, Angewandte Chemie.

[23]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[24]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[25]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[26]  A. Scherer,et al.  30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes , 1993 .

[27]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[28]  Jinhui Song,et al.  Integrated nanogenerators in biofluid. , 2007, Nano letters.

[29]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[30]  William L. Barnes,et al.  Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices , 1999 .

[31]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[32]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[33]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[34]  J. Cole,et al.  Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells. , 2008, Nano letters.

[35]  Yicheng Lu,et al.  Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency , 2007 .

[36]  Congkang Xu,et al.  A simple and novel route for the preparation of ZnO nanorods , 2002 .

[37]  Young Joon Hong,et al.  Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method , 2006 .

[38]  Jun Amano,et al.  Single-crystal Pb(ZrxTi1−x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties , 1997 .

[39]  Shuji Nakamura,et al.  The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes , 1998 .

[40]  Manijeh Razeghi,et al.  Electroluminescence at 375nm from a ZnO∕GaN:Mg∕c-Al2O3 heterojunction light emitting diode , 2006 .

[41]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[42]  Tatsuo Okada,et al.  Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes , 2009 .

[43]  Zhong Lin Wang,et al.  Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. , 2009, Applied physics letters.

[44]  Zhong Lin Wang,et al.  Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. , 2007, Nano letters.

[45]  Zhiyuan Gao,et al.  Dynamic fatigue studies of ZnO nanowires by in‐situ transmission electron microscopy , 2009 .

[46]  Martin D. Dawson,et al.  Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes , 2003 .

[47]  Hui Wu,et al.  Morphological Control of Centimeter Long Aluminum‐Doped Zinc Oxide Nanofibers Prepared by Electrospinning , 2007 .

[48]  Zhong Lin Wang,et al.  Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces , 2008 .

[49]  Gyu-Chul Yi,et al.  ZnO nanorods: synthesis, characterization and applications , 2005 .

[50]  R. Service,et al.  Engineering. Nanogenerators tap waste energy to power ultrasmall electronics. , 2010, Science.

[51]  Wenjian Weng,et al.  Polymer‐Assisted Hydrothermal Synthesis of Single‐Crystalline Tetragonal Perovskite PbZr0.52Ti0.48O3 Nanowires , 2005 .

[52]  Zhong Lin Wang,et al.  Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate , 2008 .

[53]  Zhong Lin Wang,et al.  Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. , 2009, Journal of the American Chemical Society.

[54]  A. Hagfeldt,et al.  Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO , 2001 .

[55]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[56]  K. A. Bulashevich,et al.  Hybrid ZnO/III-nitride light-emitting diodes: modelling analysis of operation , 2007 .

[57]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[58]  Xiangyang Ma,et al.  Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. , 2006, The journal of physical chemistry. B.

[59]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2009, Nature.

[60]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[61]  Chunhua Yan,et al.  A simple route towards tubular ZnO. , 2002, Chemical communications.

[62]  Hui Wu,et al.  Photoswitches and Memories Assembled by Electrospinning Aluminum‐Doped Zinc Oxide Single Nanowires , 2007 .

[63]  Ning Wang,et al.  FORMATION OF ZNO NANOSTRUCTURES BY A SIMPLE WAY OF THERMAL EVAPORATION , 2002 .

[64]  G. Hu,et al.  Epitaxy of Vertical ZnO Nanorod Arrays on Highly (001)-Oriented ZnO Seed Monolayer by a Hydrothermal Route , 2008 .

[65]  W. Park,et al.  Electroluminescence in n‐ZnO Nanorod Arrays Vertically Grown on p‐GaN , 2004 .

[66]  E. Fitzgerald,et al.  Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis , 2006 .

[67]  David P. Norton,et al.  pH measurements with single ZnO nanorods integrated with a microchannel , 2005 .

[68]  Zhong Lin Wang Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. , 2008, ACS nano.

[69]  Zhong Lin Wang Oxide nanobelts and nanowires--growth, properties and applications. , 2008, Journal of nanoscience and nanotechnology.

[70]  Jae-Young Choi,et al.  Morphology Control and Electroluminescence of ZnO Nanorod/GaN Heterojunctions Prepared Using Aqueous Solution , 2009 .

[71]  Zhong Lin Wang,et al.  Self-powered nanotech. , 2008, Scientific American.

[72]  J. Conley,et al.  Directed integration of ZnO nanobridge devices on a Si substrate , 2005 .

[73]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[74]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[75]  Zachary Lochner,et al.  Ordered Nanowire Array Blue/Near‐UV Light Emitting Diodes , 2010, Advanced materials.

[76]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[77]  Karen A. F. Copeland Experiments: Planning, Analysis, and Parameter Design Optimization , 2002 .

[78]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[79]  Byeong Yun Oh,et al.  Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes , 2006 .

[80]  Hongtao Yuan,et al.  Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD , 2004 .

[81]  Temperature-dependent study of n-ZnO/p-GaN diodes , 2007 .

[82]  V. Varadarajan,et al.  Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy , 2002 .

[83]  Oliver Harnack,et al.  Rectifying Behavior of Electrically Aligned ZnO Nanorods , 2003 .

[84]  Zhong Lin Wang,et al.  Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. , 2009, Nano letters.

[85]  K. Shung,et al.  Self-separated hydrothermal lead zirconate titanate thick films for high frequency transducer applications. , 2009, Applied physics letters.

[86]  Wenjie Mai,et al.  Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. , 2008, Journal of the American Chemical Society.

[87]  Y. Liu,et al.  Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes , 2005 .

[88]  Zhong Lin Wang,et al.  Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates , 2010 .

[89]  Manijeh Razeghi,et al.  A hybrid green light-emitting diode comprised of n-ZnO/ "InGaN/GaN… multi-quantum-wells/p-GaN , 2008 .

[90]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[91]  Sang-Wook Han,et al.  Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications , 2007 .

[92]  Ling-Dong Sun,et al.  Attachment-driven morphology evolvement of rectangular ZnO nanowires. , 2005, The journal of physical chemistry. B.

[93]  Zhong Lin Wang,et al.  Toward high output-power nanogenerator , 2008 .

[94]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[95]  B. H. Kim,et al.  X-ray diffraction studies of epitaxial Pb(Zr,Ti)O3 films prepared by chemical solution method , 1999 .

[96]  Xi Wang,et al.  Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array , 2002 .

[97]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[98]  Henry A. Sodano,et al.  Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays , 2009 .

[99]  D. Look,et al.  Observation of 430 nm Electroluminescence from ZnO/GaN Heterojunction Light-Emitting Diodes , 2003 .

[100]  G. Yi,et al.  Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition. , 2008, Small.

[101]  A. Ballman,et al.  HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1 , 1960 .

[102]  Mark D. Vaudin,et al.  Horizontal growth and in situ assembly of oriented zinc oxide nanowires , 2004 .

[103]  Zhong-Lin Wang,et al.  Schottky‐Gated Probe‐Free ZnO Nanowire Biosensor , 2009, Advances in Materials.

[104]  Jyh-Ming Ting,et al.  Growth of single crystal ZnO nanowires using sputter deposition , 2003 .

[105]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[106]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[107]  Xiaomin Li,et al.  Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. , 2005, The journal of physical chemistry. B.

[108]  M. Naughton,et al.  Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission , 2006 .

[109]  Angus I. Kingon,et al.  Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications , 2005 .

[110]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[111]  G. Whitesides,et al.  Nanoskiving: A New Method to Produce Arrays of Nanostructures , 2009 .

[112]  Ming-Yen Lu,et al.  Fabrication of a High-Brightness BlueLight-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film C A T IO , 2009 .

[113]  P. O’Brien,et al.  Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution , 2004 .

[114]  C. Serna,et al.  Formation of rod-like zinc oxide microcrystals in homogeneous solutions , 1990 .

[115]  Yaguang Wei,et al.  Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. , 2008, Nano letters.

[116]  P. Bhattacharya,et al.  Optical phonon modes in ZnO nanorods on Si prepared by pulsed laser deposition , 2006 .

[117]  K. H. Kim,et al.  III-nitride blue and ultraviolet photonic crystal light emitting diodes , 2004 .

[118]  S. Chua,et al.  Effects of oxygen on low-temperature growth and band alignment of ZnO∕GaN heterostructures , 2008 .

[119]  Peidong Yang,et al.  Vertical nanowire array-based light emitting diodes , 2008 .

[120]  C. Tseng,et al.  Well‐Aligned ZnO Nanorods via Hydrogen Treatment of ZnO Films , 2004 .

[121]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[122]  Pai-Chun Chang,et al.  ZnO Nanowire Field-Effect Transistors , 2008, IEEE Transactions on Electron Devices.

[123]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[124]  Zhong Lin Wang The new field of nanopiezotronics , 2007 .

[125]  From Nanogenerators to Nano-Piezotronics , 2007 .

[126]  Zhong Lin Wang Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications , 2009 .