Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations☆
暂无分享,去创建一个
[1] P. Gresho. Some current CFD issues relevant to the incompressible Navier-Stokes equations , 1991 .
[2] I. Simonov. Small steady perturbations behind the front of an oblique shock wave , 1979 .
[3] H. Goldstein,et al. Classical Mechanics , 1951, Mathematical Gazette.
[4] B. Mercier,et al. Eigenvalue approximation by mixed and hybrid methods , 1981 .
[5] V. Maz'ya,et al. Elliptic Boundary Value Problems , 1984 .
[6] John C. Butcher,et al. A stability property of implicit Runge-Kutta methods , 1975 .
[7] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[8] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[9] Rolf Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .
[10] R. Temam. Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .
[11] M. Powell. A method for nonlinear constraints in minimization problems , 1969 .
[12] F. B. Ellerby,et al. Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.
[13] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[14] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[15] J. C. Simo,et al. Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .
[16] Jean Leray,et al. Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .
[17] Edriss S. Titi,et al. Dissipativity of numerical schemes , 1991 .
[18] J. A. Shercliff,et al. A Textbook of Magnetohydrodynamics , 1966 .
[19] C. Scovel. Symplectic Numerical Integration of Hamiltonian Systems , 1991 .
[20] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[21] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[22] M. Gunzburger,et al. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .
[23] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[24] Jean Leray,et al. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .
[25] J. C. Simo,et al. Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .
[26] Jack K. Hale,et al. Upper semicontinuity of attractors for approximations of semigroups and partial differential equations , 1988 .
[27] Roger Temam,et al. Some mathematical questions related to the MHD equations , 1983 .
[28] J. Hale. Asymptotic Behavior of Dissipative Systems , 1988 .
[29] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[30] R. Temam. Navier-Stokes Equations , 1977 .
[31] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[32] Andrew M. Stuart,et al. Runge-Kutta methods for dissipative and gradient dynamical systems , 1994 .
[33] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[34] J. Z. Zhu,et al. The finite element method , 1977 .
[35] M. Vishik,et al. Attractors of Evolution Equations , 1992 .
[36] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[37] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[38] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[39] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[40] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[41] Jie Shen,et al. Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations , 1989 .
[42] J. C. Simo,et al. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .
[43] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[44] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[45] Gérard A. Maugin,et al. Electrodynamics Of Continua , 1990 .
[46] M. Hestenes. Multiplier and gradient methods , 1969 .
[47] J. C. Simo,et al. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .
[48] M. Fortin,et al. A generalization of Uzawa's algorithm for the solution of the Navier-Stokes equations , 1985 .
[49] Jerrold E. Marsden,et al. Nonlinear stability of fluid and plasma equilibria , 1985 .
[50] E. M. Lifshitz,et al. Electrodynamics of continuous media , 1961 .
[51] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .
[52] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .
[53] W. Hughes,et al. Electromagnetodynamics of fluids , 1966 .
[54] J. L. Lions,et al. Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .
[55] R. Temam,et al. Asymptotic numerical analysis for the Navier-Stokes equations, 1 , 1982 .
[56] R. Temam,et al. On the Large Time Galerkin Approximation of the Navier–Stokes Equations , 1984 .
[57] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[58] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[59] Daniel D. Joseph,et al. Nonlinear dynamics and turbulence , 1983 .
[60] Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis , 1990 .
[61] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[62] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.