Electronic tuning of self-healing fluorophores for live-cell and single-molecule imaging

Mechanistic investigation of self-healing fluorophores leads to a general approach for highly photostable fluorophores across the spectrum.

[1]  H. Abruña,et al.  Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability , 2016, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[2]  Jens Oelerich,et al.  A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization , 2016, Nature Communications.

[3]  Stefan W. Hell,et al.  SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy , 2015, Nature Communications.

[4]  J. Ivanic,et al.  Reactive species involved in the regioselective photooxidation of heptamethine cyanines , 2015, Chemical science.

[5]  Andreas Plückthun,et al.  Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells , 2015, Nature Methods.

[6]  E. Betzig,et al.  Imaging live-cell dynamics and structure at the single-molecule level. , 2015, Molecular cell.

[7]  J. J. Macklin,et al.  A general method to improve fluorophores for live-cell and single-molecule microscopy , 2014, Nature Methods.

[8]  V. Subramaniam,et al.  Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells. , 2014, Biophysical journal.

[9]  S. Hell,et al.  Fluorogenic probes for live-cell imaging of the cytoskeleton , 2014, Nature Methods.

[10]  Christian Dahlstrand,et al.  Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. , 2014, Chemical reviews.

[11]  Monika A. Ciuba,et al.  Photophysical processes in single molecule organic fluorescent probes. , 2014, Chemical Society reviews.

[12]  S. Jockusch,et al.  Ultra-stable organic fluorophores for single-molecule research. , 2014, Chemical Society reviews.

[13]  Gerard Roelfes,et al.  Mechanism of intramolecular photostabilization in self-healing cyanine fluorophores. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  S. Blanchard,et al.  Small-molecule photostabilizing agents are modifiers of lipid bilayer properties. , 2013, Biophysical journal.

[15]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[16]  Steffen Jockusch,et al.  On the Mechanisms of Cyanine Fluorophore Photostabilization. , 2012, The journal of physical chemistry letters.

[17]  S. Blanchard Reply to "'Self-healing' dyes: intramolecular stabilization of organic fluorophores" , 2012, Nature Methods.

[18]  P. Tinnefeld,et al.  'Self-healing' dyes: intramolecular stabilization of organic fluorophores , 2012, Nature Methods.

[19]  Daniel S. Terry,et al.  Enhanced photostability of cyanine fluorophores across the visible spectrum , 2012, Nature Methods.

[20]  Taekjip Ha,et al.  Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. , 2012, Annual review of physical chemistry.

[21]  Y. Sako,et al.  Live cell single‐molecule detection in systems biology , 2012, Wiley interdisciplinary reviews. Systems biology and medicine.

[22]  Jonathan A Javitch,et al.  Cyanine fluorophore derivatives with enhanced photostability , 2011, Nature Methods.

[23]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[24]  S. Jockusch,et al.  Electron Spin Polarization Transfer from a Nitroxide Incarcerated within a Nanocapsule to a Nitroxide in the Bulk Aqueous Solution , 2010 .

[25]  K. Weninger,et al.  Detecting the conformation of individual proteins in live cells , 2010, Nature Methods.

[26]  James B. Munro,et al.  Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. , 2009, Biophysical journal.

[27]  Mike Heilemann,et al.  A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. , 2008, Angewandte Chemie.

[28]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[29]  Colin Echeverría Aitken,et al.  An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. , 2008, Biophysical journal.

[30]  Shimon Weiss,et al.  Photobleaching pathways in single-molecule FRET experiments. , 2007, Journal of the American Chemical Society.

[31]  Christian Eggeling,et al.  Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. , 2007, The journal of physical chemistry. A.

[32]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[33]  C. Seidel,et al.  Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. , 2006, The journal of physical chemistry. A.

[34]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[35]  M. Merchán,et al.  A theory of nonvertical triplet energy transfer in terms of accurate potential energy surfaces: the transfer reaction from pi,pi* triplet donors to 1,3,5,7-cyclooctatetraene. , 2004, The Journal of chemical physics.

[36]  J. Fouassier,et al.  Investigation of the triplet quantum yield of thioxanthone by time-resolved thermal lens spectroscopy: solvent and population lens effects , 2000 .

[37]  P. Klán,et al.  Intramolecular Triplet Energy Transfer in Flexible Molecules: Electronic, Dynamic, and Structural Aspects , 1999 .

[38]  P. Klán,et al.  Intramolecular Triplet Energy Transfer in Bichromophores with Long Flexible Tethers , 1998 .

[39]  W. C. Lineberger,et al.  Transition-State Spectroscopy of Cyclooctatetraene , 1996, Science.

[40]  T. C. Bruice,et al.  Ground State Conformations and Entropic and Enthalpic Factors in the Efficiency of Intramolecular and Enzymatic Reactions. 1. Cyclic Anhydride Formation by Substituted Glutarates, Succinate, and 3,6-Endoxo-Δ4-tetrahydrophthalate Monophenyl Esters , 1996 .

[41]  P. Wagner,et al.  Through-space intramolecular triplet energy transfer: the cinnamyl esters of .omega.-benzoyl carboxylic acids , 1992 .

[42]  A. Glazer,et al.  Fluorescence‐based assay for reactive oxygen species: a protective role for creatinine , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[43]  N. Colin Baird,et al.  Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3.pi..pi.* state of cyclic hydrocarbons , 1972 .

[44]  D. Cowan,et al.  Intramolecular triplet energy transfer , 1971 .

[45]  T. C. Bruice,et al.  The Effect of Geminal Substitution Ring Size and Rotamer Distribution on the Intramolecular Nucleophilic Catalysis of the Hydrolysis of Monophenyl Esters of Dibasic Acids and the Solvolysis of the Intermediate Anhydrides , 1960 .

[46]  R. Benesch,et al.  Enzymatic removal of oxygen for polarography and related methods. , 1953, Science.

[47]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[48]  W. Marsden I and J , 2012 .

[49]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .

[50]  T. N. Das,et al.  Triplet of cyclooctatetraene: reactivity and properties , 1994 .

[51]  K. Peters,et al.  Synthesis of endoperoxides derived from cyclooctatetraenes via singlet oxygenation , 1985 .

[52]  Juan C. Scaiano,et al.  Modern Molecular Photochemistry of Organic Molecules , 1978 .

[53]  Steven L. Murov,et al.  Handbook of photochemistry , 1973 .

[54]  W. Jencks Catalysis in chemistry and enzymology , 1969 .

[55]  S. Ali,et al.  Tetrahedron , 1957, Nature.

[56]  and as an in , 2022 .