Preparative, in Vitro Biocatalysis of Triketide Lactone Chiral Building Blocks

PKS biocatalysis: The terminal module of erythromycin synthase was used for the in vitro production of chiral triketide lactones. Combining cofactor regeneration, substrate truncation, and enzymatic promiscuity afforded a scalable strategy to generate these molecules from abundant racemic and achiral precursors. The described biocatalytic platform thus facilitates the application and study of enzymes within PKS modules.

[1]  C. Kao,et al.  ENGINEERED BIOSYNTHESIS OF A TRIKETIDE LACTONE FROM AN INCOMPLETE MODULAR POLYKETIDE SYNTHASE , 1994 .

[2]  P. Leadlay,et al.  Polyketide synthesis in vitro on a modular polyketide synthase. , 1995, Chemistry & biology.

[3]  P. Leadlay,et al.  Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. , 1995, Science.

[4]  P. Leadlay,et al.  A hybrid modular polyketide synthase obtained by domain swapping. , 1996, Chemistry & biology.

[5]  P. Leadlay,et al.  The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. , 1997, Biochemistry.

[6]  D. Cane,et al.  Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. , 1999, Chemistry & biology.

[7]  D. Cane,et al.  Remarkably broad substrate tolerance of malonyl-CoA synthetase, an enzyme capable of intracellular synthesis of polyketide precursors. , 2001, Journal of the American Chemical Society.

[8]  L. Miercke,et al.  Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: Versatility from a unique substrate channel , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jonathan Kennedy,et al.  Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production , 2003, Journal of Industrial Microbiology and Biotechnology.

[10]  Huimin Zhao,et al.  Regeneration of cofactors for use in biocatalysis. , 2003, Current opinion in biotechnology.

[11]  S. Xue,et al.  Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: Synthetic strategy and preparation of a common precursor , 2004 .

[12]  John R Carney,et al.  Precursor‐Directed Biosynthesis of Novel Triketide Lactones , 2008, Biotechnology progress.

[13]  Chaitan Khosla,et al.  Biochemical analysis of the substrate specificity of the beta-ketoacyl-acyl carrier protein synthase domain of module 2 of the erythromycin polyketide synthase. , 2004, Biochemistry.

[14]  T. Chou,et al.  On the remarkable antitumor properties of fludelone: how we got there. , 2005 .

[15]  John R Carney,et al.  Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes , 2005, Nature Biotechnology.

[16]  S. Danishefsky,et al.  Der Weg zu Fludelon: ein Tumortherapeutikum mit außergewöhnlichen Eigenschaften , 2005 .

[17]  Chaitan Khosla,et al.  Structure and mechanism of the 6-deoxyerythronolide B synthase. , 2007, Annual review of biochemistry.

[18]  A. Keatinge-Clay,et al.  A tylosin ketoreductase reveals how chirality is determined in polyketides. , 2007, Chemistry & biology.

[19]  Chaitan Khosla,et al.  Structure-based dissociation of a type I polyketide synthase module. , 2007, Chemistry & biology.

[20]  Chaitan Khosla,et al.  Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase. , 2007, Journal of the American Chemical Society.

[21]  Guangbin Dong,et al.  Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches , 2008, Nature.

[22]  Guido Sauter,et al.  A Polylinker Approach to Reductive Loop Swaps in Modular Polyketide Synthases , 2008, Chembiochem : a European journal of chemical biology.

[23]  S. Brady,et al.  Metagenomic approaches to natural products from free-living and symbiotic organisms. , 2009, Natural product reports.

[24]  C. Hertweck,et al.  The biosynthetic logic of polyketide diversity. , 2009, Angewandte Chemie.

[25]  D. Sherman,et al.  Synthesis and biochemical analysis of complex chain-elongation intermediates for interrogation of molecular specificity in the erythromycin and pikromycin polyketide synthases. , 2009, Journal of the American Chemical Society.

[26]  Christian Hertweck Die biosynthetische Grundlage der Polyketid‐Vielfalt , 2009 .

[27]  Chaitan Khosla,et al.  Stereospecificity of the dehydratase domain of the erythromycin polyketide synthase. , 2010, Journal of the American Chemical Society.

[28]  Yong Li,et al.  Using Chemobiosynthesis and Synthetic Mini-Polyketide Synthases To Produce Pharmaceutical Intermediates in Escherichia coli , 2010, Applied and Environmental Microbiology.

[29]  D. Siegel,et al.  Employing modular polyketide synthase ketoreductases as biocatalysts in the preparative chemoenzymatic syntheses of diketide chiral building blocks. , 2011, Chemistry & biology.

[30]  A. Keatinge-Clay,et al.  Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB. , 2011, Chemistry & biology.

[31]  H. Luesch,et al.  Marine natural products: a new wave of drugs? , 2011, Future medicinal chemistry.

[32]  F. Hahn,et al.  Vereinigung von chemischer Synthese und Biosynthese: ein neues Kapitel in der Totalsynthese von Naturstoffen und Naturstoffbibliotheken , 2012 .

[33]  Andreas Kirschning,et al.  Merging chemical synthesis and biosynthesis: a new chapter in the total synthesis of natural products and natural product libraries. , 2012, Angewandte Chemie.

[34]  Mark Horsman,et al.  6-Deoxyerythronolide B synthase thioesterase-catalyzed macrocyclization is highly stereoselective. , 2012, Organic letters.

[35]  Satoshi Yuzawa,et al.  Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation , 2012, Proceedings of the National Academy of Sciences.

[36]  V. Pande,et al.  Precursor directed biosynthesis of an orthogonally functional erythromycin analogue: selectivity in the ribosome macrolide binding pocket. , 2012, Journal of the American Chemical Society.

[37]  A. Keatinge-Clay,et al.  Employing a polyketide synthase module and thioesterase in the semipreparative biocatalysis of diverse triketide pyrones , 2012 .

[38]  M. Marsden,et al.  Designed, Synthetically Accessible Bryostatin Analogues Potently Induce Activation of Latent HIV Reservoirs in vitro , 2012, Nature chemistry.