The Lambert W function and the spectrum of some multidimensional time-delay systems

In this note we find an explicit expression for the eigenvalues of a retarded time-delay system with one delay, for the special case that the system matrices are simultaneously triangularizable, which includes the case where they commute. Using matrix function definitions we define a matrix version of the Lambert W function, from which we form the expression. We prove by counter-example that some expressions in other publications on Lambert W for time-delay systems do not always hold.

[1]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic systems , 1990 .

[2]  Kevin L. Moore,et al.  Analytical stability bound for delayed second-order systems with repeating poles using Lambert function W , 2002, Autom..

[3]  L. Hogben Handbook of Linear Algebra , 2006 .

[4]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[5]  Tamás Kalmár-Nagy,et al.  A New Look at the Stability Analysis of Delay-Differential Equations , 2005 .

[6]  Mauro Bambi,et al.  Endogenous growth and time to build: the AK case , 2008 .

[7]  K. Moore,et al.  Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[8]  Sun Yi,et al.  Analysis of Systems of Linear Delay Differential Equations Using the Matrix Lambert Function and the Laplace Transformation , 2006 .

[9]  Robert M Corless,et al.  SOLVING SOME DELAY DIFFERENTIAL EQUATIONS WITH COMPUTER ALGEBRA , 2005 .

[10]  E Schöll,et al.  Control of unstable steady states by time-delayed feedback methods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[12]  Takehiro Mori,et al.  Robust stability analysis of linear time-delay systems by Lambert W function: Some extreme point results , 2006, Autom..

[13]  Robert M. Corless,et al.  Quasipolynomial root-finding: A numerical homotopy method∗ , 2005 .

[14]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[15]  Dimitri Breda,et al.  Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations , 2005, SIAM J. Sci. Comput..

[16]  Pankaj Wahi,et al.  Galerkin Projections for Delay Differential Equations , 2003 .

[17]  Chyi Hwang,et al.  A note on the use of the Lambert W function in the stability analysis of time-delay systems , 2005, Autom..

[18]  Sun Yi,et al.  Solution of a system of linear delay differential equations using the matrix Lambert function , 2006, 2006 American Control Conference.

[19]  Minghua Chen,et al.  NEW CONGESTION CONTROL SCHEMES OVER WIRELESS NETWORKS: STABILITY ANALYSIS , 2005 .

[20]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[21]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[22]  A. Galip Ulsoy,et al.  Analysis of a System of Linear Delay Differential Equations , 2003 .

[23]  N. Higham Functions Of Matrices , 2008 .