Adaptive VEM: Stabilization-Free A Posteriori Error Analysis

In the present paper we initiate the challenging task of building a mathematically sound theory for Adaptive Virtual Element Methods (AVEMs). Among the realm of polygonal meshes, we restrict our analysis to triangular meshes with hanging nodes in 2d – the simplest meshes with a systematic refinement procedure that preserves shape regularity and optimal complexity. A major challenge in the a posteriori error analysis of AVEMs is the presence of the stabilization term, which is of the same order as the residual-type error estimator but prevents the equivalence of the latter with the energy error. Under the assumption that any chain of recursively created hanging nodes has uniformly bounded length, we show that the stabilization term can be made arbitrarily small relative to the error estimator provided the stabilization parameter of the scheme is sufficiently large. This quantitative estimate leads to stabilization-free upper and lower a posteriori bounds for the energy error. This novel and crucial property of VEMs hinges on the largest subspace of continuous piecewise linear functions and the delicate interplay between its coarser scales and the finer ones of the VEM space. Our results apply to H-conforming (lowest order) VEMs of any kind, including the classical and enhanced VEMs. lourenco.beirao@unimib.it claudio.canuto@polito.it rhn@math.umd.edu giuseppe.vacca@uniba.it marco.verani@polimi.it 1 ar X iv :2 11 1. 07 65 6v 1 [ m at h. N A ] 1 5 N ov 2 02 1

[1]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[2]  G. Vacca,et al.  Equilibrium analysis of an immersed rigid leaflet by the virtual element method , 2020, Mathematical Models and Methods in Applied Sciences.

[3]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[4]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[5]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[6]  C. Canuto,et al.  Convergence and Optimality of hp-AFEM , 2015, 1503.03996.

[7]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2021, J. Sci. Comput..

[8]  Glaucio H. Paulino,et al.  A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM) , 2019, Computer Methods in Applied Mechanics and Engineering.

[9]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[10]  Gianmarco Manzini,et al.  A posteriori error estimation and adaptivity in hp virtual elements , 2018, Numerische Mathematik.

[11]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[12]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[13]  Stefano Berrone,et al.  Anisotropic a posteriori error estimate for the Virtual Element Method , 2020, IMA Journal of Numerical Analysis.

[14]  Ohannes A. Karakashian,et al.  Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[15]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[16]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[17]  Peter Wriggers,et al.  Electro-magneto-mechanically response of polycrystalline materials: Computational Homogenization via the Virtual Element Method , 2020, Computer Methods in Applied Mechanics and Engineering.

[18]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[19]  Glaucio H. Paulino,et al.  Virtual element method (VEM)-based topology optimization: an integrated framework , 2019, Structural and Multidisciplinary Optimization.

[20]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[21]  Filánder A. Sequeira,et al.  A posteriori error analysis of a mixed virtual element method for a nonlinear Brinkman model of porous media flow , 2020, Comput. Math. Appl..

[22]  L. Mascotto,et al.  Adaptive virtual element methods with equilibrated flux , 2020, Applied Numerical Mathematics.

[23]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[24]  Ricardo H. Nochetto,et al.  Primer of Adaptive Finite Element Methods , 2011 .

[25]  Stefano Berrone,et al.  A residual a posteriori error estimate for the Virtual Element Method , 2017 .

[26]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[27]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[28]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[29]  Andreas Veeser,et al.  LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .

[30]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[31]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[32]  Andrea Cangiani,et al.  A posteriori error estimates for mixed virtual element methods , 2019, 1904.10054.

[33]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[34]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[35]  L. Mascotto,et al.  Adaptive virtual elements based on hybridized, reliable, and efficient flux reconstructions , 2021, ArXiv.

[36]  Ricardo H. Nochetto,et al.  Adaptive Spectral Galerkin Methods with Dynamic Marking , 2016, SIAM J. Numer. Anal..

[37]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[38]  Stefan A. Funken,et al.  Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..

[39]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[40]  Edoardo Artioli,et al.  VEM-based tracking algorithm for cohesive/frictional 2D fracture , 2020 .

[41]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[42]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[43]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[44]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[45]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .