Least squares estimation of a k-monotone density function

The fact that a k-monotone density can be defined by means of a mixing distribution makes its estimation feasible within the framework of mixture models. It turns the problem naturally into estimating a mixing distribution, nonparametrically. This paper studies the least squares approach to solving this problem and presents two algorithms for computing the estimate. The resulting mixture density is hence just the least squares estimate of the k-monotone density. Through simulated and real data examples, the usefulness of the least squares density estimator is demonstrated.

[1]  Yong Wang,et al.  Maximum likelihood computation for fitting semiparametric mixture models , 2010, Stat. Comput..

[2]  Mary C. Meyer NONPARAMETRIC ESTIMATION OF A SMOOTH DENSITY WITH SHAPE RESTRICTIONS , 2012 .

[3]  P H Millard,et al.  Balancing acute and long-term care: the mathematics of throughput in departments of geriatric medicine. , 1991, Methods of information in medicine.

[4]  Yong Wang,et al.  Minimum quadratic distance density estimation using nonparametric mixtures , 2013, Comput. Stat. Data Anal..

[5]  Yong Wang On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution , 2007 .

[6]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[7]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[8]  Edward J. Wegman,et al.  Maximum Likelihood Estimation of a Unimodal Density Function , 1970 .

[9]  N. Uth,et al.  Estimation of V̇O2max from the ratio between HRmax and HRrest – the Heart Rate Ratio Method , 2004, European Journal of Applied Physiology.

[10]  Melanie Birke,et al.  Shape constrained kernel density estimation , 2009 .

[11]  A. Dax The smallest point of a polytope , 1990 .

[12]  Yong Wang,et al.  Density estimation using non-parametric and semi-parametric mixtures , 2012 .

[13]  M. Cule,et al.  Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.

[14]  Kee-Hoon Kang,et al.  Unimodal kernel density estimation by datra sharpening , 2005 .

[15]  J. Wellner,et al.  Estimation of a k − monotone density , part 3 : limiting Gaussian versions of the problem ; invelopes and envelopes , 2004 .

[16]  Peter Congdon,et al.  Applied Bayesian Modelling , 2003 .

[17]  U. Grenander On the theory of mortality measurement , 1956 .

[18]  J. Wellner,et al.  Estimation of a k-monotone density: limit distribution theory and the Spline connection , 2005, math/0509081.

[19]  Fadoua Balabdaoui,et al.  Estimation of a k‐monotone density: characterizations, consistency and minimax lower bounds , 2010, Statistica Neerlandica.

[20]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[21]  Desale Habtzghi,et al.  Nonparametric estimation of density and hazard rate functions with shape restrictions , 2011 .

[22]  Fadoua Balabdaoui,et al.  Estimation of a k-monotone density , part 2 : algorithms for computation and numerical results , 2004 .

[23]  Richard J. Samworth,et al.  Maximum likelihood estimation of a multi-dimensional log-concave density: Estimation of a Multi-dimensional Log-concave Density , 2010 .

[24]  Jon A. Wellner,et al.  Nonparametric estimation of multivariate scale mixtures of uniform densities , 2010, J. Multivar. Anal..

[25]  J. Wellner,et al.  Estimation of a convex function: characterizations and asymptotic theory. , 2001 .

[26]  Pengfei Li,et al.  Testing the Order of a Finite Mixture , 2010 .

[27]  L. Duembgen,et al.  Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency , 2007, 0709.0334.

[28]  June The support reduction algorithm for computing nonparametric function estimates in mixture models June 25 , 2003 , 2022 .