The role of long-lived arc volcanism in the formation of the VMS deposits: a case study of the volcanic-sedimentary sequence of Kangbutiebao Formation associated with VMS deposits, Altai Mountains

[1]  Xing-ke Yang,et al.  Genesis of the Talate Pb–Zn (–Fe) deposit in the Altay, Xinjiang, NW China: Evidence from fluid inclusions and stable isotopes , 2022, Ore Geology Reviews.

[2]  Bin Chen,et al.  Origin of highly fractionated peraluminous granites in South China: Implications for crustal anatexis and evolution , 2021 .

[3]  Qi Wu,et al.  Bimodal volcanic rocks in the northeastern margin of the Yangtze Block: Response to breakup of Rodinia supercontinent , 2021 .

[4]  Bin Zhang,et al.  Zircon U–Pb age, fluid inclusion, and H–C–O–He–Ar–S isotopic compositions as an index to the VMS-type mineralization: A case study from the Wulasigou polymetallic deposit, Altay Orogenic Belt, Northwest China , 2021 .

[5]  D. Huston,et al.  Geochemistry and petrogenesis of Paleoproterozoic rhyolite-hosted zinc-rich metamorphosed volcanogenic massive sulfide deposits in the eastern Betul Belt, central India , 2020 .

[6]  Lei Niu,et al.  A revised stratigraphic and tectonic framework for the Ashele volcanogenic massive sulfide deposit in the southern Chinese Altay: Evidence from stratigraphic relationships and zircon geochronology , 2020 .

[7]  Yongsheng He,et al.  Partial Melts of Intermediate–Felsic Sources in a Wedged Thickened Crust: Insights from Granites in the Sulu Orogen , 2020 .

[8]  J. Wong,et al.  Constraints of zircon Hf isotopes on ancient crustal reworking in the Early Paleozoic Altai accretionary wedge, Central Asian Orogenic Belt , 2020 .

[9]  Yi Zheng,et al.  Trace elemental and sulfur-lead isotopic variations in metamorphosed volcanogenic massive sulfide (VMS) mineralization systems: An example from the Keketale Pb-Zn(-Ag) deposit, NW China , 2020 .

[10]  Haoruo Wu,et al.  U–Pb zircon geochronology, geochemistry, and Sr–Nd–Hf–O isotopic study of Middle Neoproterozoic magmatic rocks in the Kangdian Rift, South China: Slab rollback and backarc extension at the northwestern edge of the Rodinia , 2020 .

[11]  L. Dai,et al.  A Devonian arc–back-arc basin system in the southern Chinese Altai: Constraints from geochemical and Sr-Nd-Pb isotopic data for meta-basaltic rocks , 2020 .

[12]  S. Sergeev,et al.  Mesoarchean bimodal volcanic rocks of the Onot greenstone belts, southwestern Siberian craton: Implications for magmatism in an extension/rift setting , 2020 .

[13]  J. Wong,et al.  Whole-rock geochemistry and U-Pb ages of Devonian bimodal-type rhyolites from the Rudny Altai, Russia: Petrogenesis and tectonic settings , 2020 .

[14]  Bin Zhang,et al.  Geology and geochronology of the volcanogenic massive sulphide polymetallic deposits in Altay Orogenic Belt, Xinjiang, Northwest China: examples from the Kelan Basin , 2020 .

[15]  Lei Yang,et al.  Geochemistry and detrital zircon U–Pb dating of Pliocene-Pleistocene sandstones of the Chittagong Tripura Fold Belt (Bangladesh): Implications for provenance , 2020 .

[16]  C. Yuan,et al.  Magmatic recycling of accretionary wedge: A new perspective on Silurian-Devonian I-type granitoids generation in the Chinese Altai , 2020 .

[17]  Yi Zheng,et al.  Pb-Zn-Cu accumulation from seafloor sedimentation to metamorphism: Constraints from ore textures coupled with elemental and isotopic geochemistry of the Tiemurt in Chinese Altay Orogen, NW China , 2019, Gondwana Research.

[18]  Tao Wang,et al.  Contrasting deep crustal compositions between the Altai and East Junggar orogens, SW Central Asian Orogenic Belt: Evidence from zircon Hf isotopic mapping , 2019, Lithos.

[19]  W. Xiao,et al.  Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis? , 2019, Gondwana Research.

[20]  W. Xiao,et al.  Structural and Geochronological Constraints on Devonian Suprasubduction Tectonic Switching and Permian Collisional Dynamics in the Chinese Altai, Central Asia , 2019, Tectonics.

[21]  Guochun Zhao,et al.  Zircon U-Pb ages and Hf isotopes of Paleozoic metasedimentary rocks from the Habahe Group in the Qinghe area, Chinese Altai and their tectonic implications , 2018, Gondwana Research.

[22]  Shouyu Chen,et al.  Petrogenesis and geodynamic evolution of Ordovician volcanics from the Baiyinchang volcanic-hosted massive sulphide district, Gansu Province, China , 2018 .

[23]  Sheng’an Wang,et al.  Polycyclic Palaeozoic evolution of accretionary orogenic wedge in the southern Chinese Altai: Evidence from structural relationships and U–Pb geochronology , 2018, Lithos.

[24]  F. Chai,et al.  Timing of formation of the Keketale Pb–Zn deposit, Xinjiang, Northwest China, Central Asian Orogenic Belt: Implications for the metallogeny of the South Altay Orogenic Belt , 2018 .

[25]  P. Hanžl,et al.  Neoproterozoic‐Early Paleozoic Peri‐Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U‐Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai , 2017 .

[26]  Yong‐Fei Zheng,et al.  Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance , 2017 .

[27]  Zi-Fu Zhao,et al.  Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China , 2017 .

[28]  M. Santosh,et al.  Sediment recycling and crustal growth in the Central Asian Orogenic Belt: Evidence from Sr–Nd–Hf isotopes and trace elements in granitoids of the Chinese Altay , 2017 .

[29]  Jin-Hui Yang,et al.  Whole-rock Nd-Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: constraints on the nature of the lower crust and tectonic setting , 2017 .

[30]  Zhixin Zhang,et al.  A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China , 2017 .

[31]  Tao Wang,et al.  Tracking deep ancient crustal components by xenocrystic/inherited zircons of Palaeozoic felsic igneous rocks from the Altai–East Junggar terrane and adjacent regions, western Central Asian Orogenic Belt and its tectonic significance , 2017 .

[32]  Peter A. Cawood,et al.  Late Permian–Triassic metallogeny in the Chinese Altay Orogen: Constraints from mica 40Ar/39Ar dating on ore deposits , 2017 .

[33]  Fu-guan Wu,et al.  Highly fractionated granites: Recognition and research , 2017, Science China Earth Sciences.

[34]  Zhi-hui Wang,et al.  Age, petrogenesis, and tectonic setting of the Permian bimodal volcanic rocks in the eastern Jiamusi Massif, NE China , 2017 .

[35]  B. Windley,et al.  Contrasting ore styles and their role in understanding the evolution of the Altaids , 2017 .

[36]  C. Yuan,et al.  Anatexis of accretionary wedge, Pacific‐type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt , 2016 .

[37]  D. Wyman,et al.  Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow , 2016, Nature Communications.

[38]  F. Chai,et al.  The 401–409 Ma Xiaodonggou granitic intrusion: implications for understanding the Devonian Tectonics of the Northwest China Altai orogen , 2016 .

[39]  Chuan-Lin Zhang,et al.  Devonian Alaskan-type ultramafic–mafic intrusions and silicic igneous rocks along the southern Altai orogen: Implications on the Phanerozoic continental growth of the Altai orogen of the Central Asian Orogenic Belt , 2015 .

[40]  Lei Liu,et al.  Neoproterozoic intraplate crustal accretion on the northern margin of the Yangtze Block: Evidence from geochemistry, zircon SHRIMP U–Pb dating and Hf isotopes from the Fuchashan Complex , 2015 .

[41]  J. Peter,et al.  Controls on the siting and style of volcanogenic massive sulphide deposits , 2015 .

[42]  Yong‐Fei Zheng,et al.  Developing plate tectonics theory from oceanic subduction zones to collisional orogens , 2015, Science China Earth Sciences.

[43]  C. Yuan,et al.  A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion , 2015 .

[44]  M. Ghiorso,et al.  MELTS_Excel: A Microsoft Excel‐based MELTS interface for research and teaching of magma properties and evolution , 2015 .

[45]  K. Schulmann,et al.  Juxtaposition of Barrovian and migmatite domains in the Chinese Altai: a result of crustal thickening followed by doming of partially molten lower crust , 2015 .

[46]  R. Creaser,et al.  Besshi-Type VMS Deposits of the Rudny Altai (Central Asia) , 2014 .

[47]  Cin-Ty A. Lee,et al.  How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics , 2014 .

[48]  F. Liu,et al.  In situ LA-MC-ICP-MS U-Pb geochronology of igneous rocks in the Ashele Basin, Altay orogenic belt, northwest China: Constraints on the timing of polymetallic copper mineralization , 2014 .

[49]  Tao Wang,et al.  Post-accretionary permian granitoids in the Chinese Altai orogen: Geochronology, petrogenesis and tectonic implications , 2014, American Journal of Science.

[50]  M. Hannington 13.18 – Volcanogenic Massive Sulfide Deposits , 2014 .

[51]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[52]  P. Hollings,et al.  Metamorphosed Pb–Zn–(Ag) ores of the Keketale VMS deposit, NW China: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions , 2013 .

[53]  Zhixin Zhang,et al.  A review of the geological characteristics and mineralization history of iron deposits in the Altay orogenic belt of the Xinjiang, Northwest China , 2013 .

[54]  E. Watson,et al.  Zircon saturation re-revisited , 2013 .

[55]  Li Zhang,et al.  Geology, fluid inclusion geochemistry, and 40Ar/39Ar geochronology of the Wulasigou Cu deposit, and their implications for ore genesis, Altay, Xinjiang, China , 2012 .

[56]  M. El-Bialy,et al.  The late Ediacaran (580-590Ma) onset of anorogenic alkaline magmatism in the Arabian-Nubian Shield: Katherina A-type rhyolites of Gabal Ma'ain, Sinai, Egypt , 2012 .

[57]  D. Groves,et al.  A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods , 2012, Mineralium Deposita.

[58]  C. Yuan,et al.  Keketuohai mafic–ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance , 2012 .

[59]  Chai Fengmei Geochronology and Genesis of Meta-felsic Volcanic Rocks from the Kangbutiebao Formation in Chonghuer Basin on Southern Margin of Altay, Xinjiang , 2012 .

[60]  Geng Xin,et al.  LA-ICP-MS U-Pb dating of volcanic rocks from Dadonggou ore district on southern margin of Altay in Xinjiang and its geological implications , 2012 .

[61]  B. Windley,et al.  Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: implications for the accretionary history of the southern Altaids , 2011, Journal of the Geological Society.

[62]  C. Yuan,et al.  Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids , 2011 .

[63]  S. Piercey The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits , 2011 .

[64]  C. Yuan,et al.  The ∼390 Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction? , 2010, American Journal of Science.

[65]  S. Pehrsson,et al.  The Geology and Metallogeny of Volcanic-Hosted Massive Sulfide Deposits: Variations through Geologic Time and with Tectonic Setting , 2010 .

[66]  S. Piercey An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide (VMS) deposits , 2010 .

[67]  Lianchang Zhang,et al.  Geological and geochemical characteristics and ore genesis of the Keketale VMS Pb–Zn deposit, Southern Altai Metallogenic Belt, NW China , 2010 .

[68]  C. Yuan,et al.  Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution , 2010 .

[69]  Geng Xin,et al.  Characteristics of fluid inclusions in the Tiemurte Pb-Zn deposit,Altay,Xinjiang and its geological significance , 2010 .

[70]  Wang Lin-lin Carbonic fluid of the Dadonggou lead-zinc ore deposit in Altay and its genesis , 2010 .

[71]  Zhixin Zhang,et al.  Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: Implications for the tectonic evolution and metallogeny , 2009 .

[72]  C. Yuan,et al.  Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions , 2009 .

[73]  Bernhardt Saini-Eidukat,et al.  Trace and minor elements in sphalerite: A LA-ICPMS study , 2009 .

[74]  C. M. Gray,et al.  Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia , 2009 .

[75]  Tao Wang,et al.  Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt , 2009 .

[76]  Dunyi Liu,et al.  Paleozoic multiple subduction-accretion processes of the southern Altaids , 2009, American Journal of Science.

[77]  Mao Jing,et al.  Geochronology and genesis of the meta-rhyolites in the Kangbutiebao Formation from the Kelang basin at the southern margin of the Altay, Xinjiang , 2009 .

[78]  Peter A. Cawood,et al.  Accretionary orogens through Earth history , 2009 .

[79]  C. Yuan,et al.  Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution , 2008 .

[80]  C. Yuan,et al.  Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic , 2008 .

[81]  Chai Fengmei SHRIMP Zircon U-Pb Dating for Metarhyolites of the Kangbutiebao Formation at the Abagong Iron Deposit in the Southern Margin of the Altay,Xinjiang and Its Geological Significance , 2008 .

[82]  Liu Min Geology and Stable Isotope Geochemistry of the Dadonggou Pb-Zn Ore Deposit, Altay, Xinjiang, NW China , 2008 .

[83]  Liu Feng SHRIMP U-Pb Ages of the Abagong Granites in the Altay Orogen and Their Geological Implications , 2008 .

[84]  C. Yuan,et al.  Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt , 2007 .

[85]  Peter A. Cawood,et al.  Linking accretionary orogenesis with supercontinent assembly , 2007 .

[86]  E. Watson,et al.  New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers , 2007 .

[87]  N. He Geochemical characteristics, magmtic genesis and tectonic background of the late paleozoic high potassium and high silicon ignimbrite on the southern margin of Altaid, north Xinjiang. , 2007 .

[88]  K. Condie Accretionary orogens in space and time , 2007 .

[89]  Tao Wang,et al.  Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen , 2006, The Journal of Geology.

[90]  Dunyi Liu,et al.  Sources of Phanerozoic granitoids in the transect Bayanhongor–Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth , 2004 .

[91]  H. Gibson,et al.  TRACE ELEMENT GEOCHEMISTRY AND PETROGENESIS OF FELSIC VOLCANIC ROCKS ASSOCIATED WITH VOLCANOGENIC MASSIVE Cu-Zn-Pb SULFIDE DEPOSITS , 2004 .

[92]  M. Hopkins,et al.  U-Pb zircon and geochemical evidence for bimodal mid-paleozoic magmatism and syngenetic base-metal mineralization in the Yukon-Tanana terrane, Alaska , 2004 .

[93]  B. Windley,et al.  Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia , 2004, Journal of the Geological Society.

[94]  M. Norman,et al.  Growth of early continental crust by partial melting of eclogite , 2003, Nature.

[95]  C. Miller,et al.  Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance , 2003 .

[96]  B. Windley,et al.  Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution , 2002, The Journal of Geology.

[97]  M. P. Gorton,et al.  APPLICATION OF HIGH FIELD STRENGTH ELEMENTS TO DISCRIMINATE TECTONIC SETTINGS IN VMS ENVIRONMENTS , 2002 .

[98]  Jiajun Liu,et al.  Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence , 2002 .

[99]  A. Hofmann,et al.  Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth , 2002 .

[100]  S. Paradis,et al.  Geochemistry and Paleotectonic Setting of Felsic Volcanic Rocks in the Finlayson Lake Volcanic-Hosted Massive Sulfide District, Yukon, Canada , 2001 .

[101]  Ross R. Large,et al.  The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits , 2001 .

[102]  Bin Chen,et al.  Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic , 2000 .

[103]  Zhang Jinhong,et al.  Massive Sulphide Deposits Related to the Volcano‐Passive Continental Margin in the Altay Region , 1999 .

[104]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[105]  W. Griffin,et al.  Application of proton-microprobe data to trace-element partitioning in volcanic rocks , 1994 .

[106]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[107]  Ross R. Large,et al.  Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models , 1992 .

[108]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[109]  M. Herron Geochemical classification of terrigenous sands and shales from core or log data , 1988 .

[110]  T. Druitt,et al.  Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon , 1988 .

[111]  P. Floyd,et al.  Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones , 1987, Journal of the Geological Society.

[112]  I. Campbell,et al.  Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada , 1986 .

[113]  K. Crook,et al.  Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins , 1986 .

[114]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[115]  G. M. Young,et al.  Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations , 1984 .

[116]  J. Hallberg A geochemical aid to igneous rock type identification in deeply weathered terrain , 1984 .

[117]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[118]  W. Leeman Partitioning of Pb between volcanic glass and coexisting sanidine and plagioclase feldspars , 1979 .

[119]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .

[120]  D. Shaw The Origin of the Apsley Gneiss, Ontario , 1972 .