Error analysis for spectral approximation of the Korteweg-De Vries equation

The conservation and convergence properties of spectral Fourier methods for the numerical approximation of the Korteweg-de Vries equation are analyzed. It is proved that the (aliased) collocation pseudospectral method enjoys the same convergence properties as the spectral Galerkin method, which is less effective from the computational point of view. This result provides a precise mathematical answer to a question raised by several authors in recent years.

[1]  B. Guo,et al.  The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation , 1986 .

[2]  J. Bona,et al.  Fully discrete galerkin methods for the korteweg-de vries equation☆ , 1986 .

[3]  J. Bona,et al.  The initial-value problem for the Korteweg-de Vries equation , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[5]  H. Schamel,et al.  The application of the spectral method to nonlinear wave propagation , 1976 .

[6]  J. Pasciak Spectral Methods for a Nonlinear Initial Value Problem Involving Pseudo Differential Operators , 1982 .

[7]  Bengt Fornberg,et al.  Numerical Computation of Nonlinear Waves , 1981 .

[8]  D. Jackson,et al.  The theory of approximation , 1982 .

[9]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[10]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[11]  T. Chan,et al.  FOURIER METHODS WITH EXTENDED STABILITY INTERVALS FOR THE KORTEWEG-DE VRIES EQUATION. , 1985 .

[12]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  J. Pasciak Spectral and pseudospectral methods for advection equations , 1980 .

[14]  Alfio Quarteroni,et al.  Fourier spectral methods for pseudo-parabolic equations , 1987 .

[15]  A C Scott,et al.  Korteweg-de Vries Equation , 2022 .

[16]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .