Trimmed linearizations for structured matrix polynomials

We discuss the eigenvalue problem for general and structured matrix polynomials which may be singular and may have eigenvalues at infinity. We derive condensed forms that allow (partial) deflation of the infinite eigenvalue and singular structure of the matrix polynomial. The remaining reduced order staircase form leads to new types of linearizations which determine the finite eigenvalues and corresponding eigenvectors. The new linearizations also simplify the construction of structure preserving linearizations.

[1]  J. Demmel,et al.  Stably Computing the Kronecker Structure and Reducing Subspaces of Singular Pencils A-λ for Uncertain Data , 1986 .

[2]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[3]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[4]  P. Rentrop,et al.  Differential-Algebraic Equations , 2006 .

[5]  D. Steven Mackey,et al.  Structured Linearizations for Matrix Polynomials , 2006 .

[6]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[7]  Volker Mehrmann,et al.  Staircase forms and trimmed linearizations for structured matrix polynomials , 2007 .

[8]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[9]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[10]  F. R. Gantmakher The Theory of Matrices , 1984 .

[11]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[12]  Kimmo Berg,et al.  European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) , 2004 .

[13]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[14]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[15]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[16]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[17]  R. M. M. Mattheij,et al.  Sensitivity of solutions of linear DAE to perturbations of the system matrices , 1998, Numerical Algorithms.

[18]  R. Glowinski,et al.  Numerical methods for multibody systems , 1994 .

[19]  I. Gohberg,et al.  General theory of regular matrix polynomials and band Toeplitz operators , 1988 .

[20]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[21]  Volker Mehrmann,et al.  ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .

[22]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[23]  E. N. Antoniou,et al.  Linearizations of polynomial matrices with symmetries and their applications , 2006 .

[24]  E. Antoniou,et al.  A new family of companion forms of polynomial matrices , 2004 .

[25]  David S. Watkins Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..

[26]  Volker Mehrmann,et al.  Transformation of high order linear differential-algebraic systems to first order , 2006, Numerical Algorithms.