Optical enhancement and losses of pyramid textured thin-film silicon solar cells

The optical enhancement and losses of microcrystalline thin-film silicon solar cells with periodic pyramid textures were investigated. Using a finite difference time domain algorithm, the optical wave propagation in the solar cell structure was calculated by rigorously solving the Maxwell’s equations. The influence of the profile dimensions (the period and height of the pyramid) and solar cell thickness on the quantum efficiency and short circuit current were analyzed. Furthermore, the influence of the solar cell thickness on the upper limit of the short circuit current was investigated. The numerically simulated short circuit currents were compared to fundamental light trapping limits based on geometric optics. Finally, optical losses in the solar cell were analyzed. After identifying these key losses, strategies for minimizing the losses can be discussed.

[1]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[2]  J. Hüpkes,et al.  Preparation and topography analysis of randomly textured glass substrates , 2010 .

[3]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[4]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[5]  Ihsanul Afdi Yunaz,et al.  ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells , 2010 .

[6]  Mukul Agrawal,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. , 2010, Optics express.

[7]  Alberto Salleo,et al.  Light trapping in thin-film silicon solar cells with submicron surface texture. , 2009, Optics express.

[8]  Dietmar Knipp,et al.  Light trapping in thin-film silicon solar cells with integrated diffraction grating , 2009 .

[9]  Christophe Ballif,et al.  TCOs for nip thin film silicon solar cells , 2009 .

[10]  Marko Topič,et al.  Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations , 2009 .

[11]  Jamie D. Phillips,et al.  Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms , 2008 .

[12]  H. Fujiwara,et al.  Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern , 2008 .

[13]  M. Wuttig,et al.  Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells , 2008 .

[14]  Thomas Kirchartz,et al.  Rugate filter for light-trapping in solar cells. , 2008, Optics express.

[15]  M. Kambe,et al.  Requirements for TCO Substrate in Si-based Thin Film Solar Cells -Toward Tandem , 2008 .

[16]  Helmut Stiebig,et al.  Transparent conducting oxide films for thin film silicon photovoltaics , 2007 .

[17]  A. Gordijn,et al.  Highly transparent microcrystalline silicon carbide grown with hot wire chemical vapor deposition as window layers in n-i-p microcrystalline silicon solar cells , 2007 .

[18]  Bernd Rech,et al.  The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells , 2007 .

[19]  Chii-Chang Chen,et al.  Broad-band anti-reflection coupler for a : Si thin-film solar cell , 2007 .

[20]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[21]  B. Rech,et al.  Thin-film silicon solar cells with grating couplers – An experimental and numerical study , 2006 .

[22]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[23]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[24]  Arvind Shah,et al.  Microcrystalline Silicon and the Impact on Micromorph Tandem Solar Cells , 2002 .

[25]  Reinhard Carius,et al.  Optical characteristics of intrinsic microcrystalline silicon , 2002 .

[26]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[27]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[28]  H. Taniguchi,et al.  Amorphous silicon solar cell on textured tempered glass substrate prepared by sandblast process , 1997 .

[29]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[30]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .

[31]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.