Determination of the 209Bi( n , ? ) 210Bi and 209Bi( n , ? ) 210m,gBi reaction cross sections in a c

Gamma-ray transitions following neutron capture in 209Bi have been studied at the cold neutron beam facility of the Budapest Neutron Centre. Measurements have been performed using a coaxial HPGe detector with Compton suppression. Partial capture cross sections at a velocity of 2200 m/s (or a neutron energy of 25.3 meV) have been deduced relatively to the one for the 4055 keV transition after thermal neutron capture in 209Bi. This partial cross section of (8.07 ± 0.14) mb has in turn been obtained from measurements with a bismuth nitrate target relatively to the cross section for the 1884 keV transition after thermal neutron capture in 14N. Shell model calculations have been performed to deduce the half-life of the 3rd excited state at 320 keV and to assign the M1 multipolarity of the 320 keV transition to the ground state. Lower limits of (21.4 ± 0.8) mb and (18.2 ± 0.7) mb for the cross sections to the ground state and to the isomeric state, respectively, have been deduced from the data for the gamma rays feeding these states. The results obtained in this work are in good agreement with experimental data reported in the literature. The thermal total capture cross section has been compared with the contribution due to observed s-wave resonances.

[1]  Thermal neutron capture cross sections of the palladium isotopes , 2008 .

[2]  Philip R. Page,et al.  ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology , 2006 .

[3]  A. Jain,et al.  Spectroscopy of the high-lying configurations in210Bi , 1989 .

[4]  Z. Révay,et al.  Determination of the 209Bi(n,γ) capture cross section at a cold neutron beam , 2005 .

[5]  U. N. Singh,et al.  Neutron resonance spectroscopy: Bi 209 , 1976 .

[6]  G. W. Phillips,et al.  Automatic analysis of gamma-ray spectra from germanium detectors , 1976 .

[7]  D. Littler,et al.  The Pile Neutron Absorption Cross Sections of Bismuth , 1953 .

[8]  E. Browne Nuclear Data Sheets for A = 210 , 2003 .

[9]  D. Ridikas,et al.  Measurement of the 210Po production induced by thermal neutron capture on 209Bi , 2006 .

[10]  Z. Révay,et al.  Wide energy range efficiency calibration method for Ge detectors , 2002 .

[11]  F. Nowacki,et al.  Full 0 h-bar omega shell model calculation of the binding energies of the 1f(7/2) nuclei , 1999 .

[12]  E. Melkonian,et al.  Measurement of the 2200 m/sec neutron-proton capture cross section , 1977 .

[13]  Z. Révay,et al.  Database of prompt gamma rays from slow neutron capture for elemental analysis , 2004 .

[14]  Z. Révay,et al.  Standardisation of the prompt gamma activation analysis method , 2003 .

[15]  R. B. Tattersall,et al.  Pile oscillator measurements of resonance absorption integrals , 1960 .

[16]  H. Ishikawa,et al.  Thermal neutron reaction cross section measurements for fourteen nuclides with a liquid scintillation spectrometer , 1978 .

[17]  H. Postma,et al.  Spins of resonances in reactions of neutrons with 238U and 113Cd , 1997 .

[18]  H. N. Friedlander,et al.  Thermal Neutron Activation Cross Sections , 1947 .

[19]  G. Reiner,et al.  Neutron scattering lengths of molten metals determined by gravity refractometry , 1990 .

[20]  K. Shibata,et al.  Evaluation of the 210mBi/210gBi Branching Ratio of the 209Bi(n, γ)210Bi Cross Section in the Neutron Energy Range from 200 keV to 3.0 MeV , 2003 .

[21]  G. Martínez-Pinedo,et al.  Frontier of shell model calculations , 2002 .

[22]  Z. Révay,et al.  Cold neutron PGAA facility at Budapest , 2004 .

[23]  Z. Révay,et al.  A new method for determination of gamma-ray spectrometer non-linearity , 1999 .

[24]  D. Donahue,et al.  Transition rates between two-body states in Tl-206, Bi-208, and Bi-210 , 1975 .

[25]  F. Firk,et al.  The low energy neutron resonances of bismuth , 1958 .

[26]  S. Kailas,et al.  RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations , 2009 .

[27]  G. W. Horsley The preparation of .bismuth for use in a liquid-metal fuelled reactor , 1957 .

[28]  W. Waschkowski,et al.  Interactions of neutrons with gallium and its isotopes , 1984 .

[29]  A. Abragam,et al.  Experimental values of spin dependent nuclear scattering lengths of slow neutrons , 1979 .

[30]  Brown,et al.  Appraisal of the Kuo-Herling shell-model interaction and application to A=210-212 nuclei. , 1991, Physical review. C, Nuclear physics.

[31]  R. N. Alves,et al.  Paramètres des résonances et fonctions densités S0 ET S1 pour Cl, 51V, 89Y, Zr, La, 141Pr ET 209Bi , 1969 .

[32]  Tamás Belgya,et al.  Improved accuracy of γ-ray intensities from basic principles for the calibration reaction N14(n,γ)N15 , 2006 .

[33]  F. Gunsing,et al.  The Use of C6D6 Detectors for Neutron Induced Capture Cross-Section Measurements in the Resonance Region , 2007 .

[34]  J. Starner,et al.  Thermal-neutron capture by 14 N , 1997 .

[35]  G. E. Thomas,et al.  Pile Neutron Absorption Cross Sections , 1950 .

[36]  I. Bergström,et al.  Effective quadrupole charges in the lead region , 1972 .

[37]  Z. Révay,et al.  New prompt k0 and partial cross section values measured in the cold neutron beam of Budapest Research Reactor , 2005 .

[38]  G. Molnár,et al.  Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra , 1997 .

[39]  F. Gunsing,et al.  Measurements of isomeric cross-section ratios for neutron capture in the resonances region , 2006 .

[40]  F. Bečvář,et al.  Simulation of γ cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities , 1998 .

[41]  New measurement of neutron capture resonances in Bi-209 , 2006, nucl-ex/0610040.