Rule-Generation Theorem and its Applications
暂无分享,去创建一个
[1] Andrzej Indrzejczak. Simple cut elimination proof for hybrid logic , 2016 .
[2] T. Braüner. Hybrid Logic and its Proof-Theory , 2010 .
[3] II. Mathematisches. Power and Weakness of the Modal Display Calculus , 1996 .
[4] Francesco Paoli. Substructural Logics: A Primer , 2011 .
[5] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[6] Andrzej Indrzejczak,et al. Cut-Free Modal Theory of Definite Descriptions , 2018, Advances in Modal Logic.
[7] Andrzej Indrzejczak,et al. Fregean Description Theory in Proof-Theoretical Setting , 2018, Logic and Logical Philosophy.
[8] Andrzej Indrzejczak,et al. Eliminability of cut in hypersequent calculi for some modal logics of linear frames , 2015, Inf. Process. Lett..
[9] Kazushige Terui,et al. From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[10] Andrzej Indrzejczak. Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus , 2016 .
[11] Franco Montagna,et al. Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions , 2010, Fuzzy Sets Syst..
[12] H. Wansing. Displaying Modal Logic , 1998 .
[13] Jonas Schreiber. Natural Deduction Hybrid Systems And Modal Logics , 2016 .
[14] Hidenori Kurokawa,et al. Hypersequent Calculi for Modal Logics Extending S4 , 2013, JSAI-isAI Workshops.
[15] Björn Lellmann,et al. Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications , 2014, IJCAR.
[16] Takashi Nagashima,et al. An Extension of the Craig-Schütte Interpolation Theorem , 1966 .
[17] Dirk Pattinson,et al. Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application to S5 , 2013, TABLEAUX.
[18] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[19] Kazuo Matsumoto,et al. Gentzen method in modal calculi. II , 1957 .
[20] Gerhard Gentzen. Die gegenwärtige Lage in der mathematischen Grundlagenforschung : Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie , 1939 .
[21] Peter Schroeder-Heister. Open Problems in Proof-Theoretic Semantics , 2016 .