Constraining geologic properties and processes through the use of impact craters

Impact cratering is the one geologic process which is common to all solar system objects. Impact craters form by the resulting explosion between a solar system body and hypervelocity objects. Comparison with craters formed by chemical and nuclear explosions reveals that crater diameter is related to other morphometric characteristics of the crater, such as depth and rim height. These relationships allow scientists to use impact craters to probe the subsurface structure within the upper few kilometer of a planetary surface and to estimate the amounts and types of degradational processes which have affected the planet since crater formation. Crater size–frequency distribution analysis provides the primary mechanism for determining ages of planetary terrains and constraining the timing of resurfacing episodes. Thus, impact craters provide many important insights into the evolution of planetary surfaces.

[1]  R. Dehon Mare Humorum and mare Nubium - Basalt thickness and basin-forming history , 1977 .

[2]  Boris A. Ivanov,et al.  IMPACT CRATER COLLAPSE , 1999 .

[3]  B. Ivanov,et al.  Impact cratering in H2O‐bearing targets on Mars: Thermal field under craters as starting conditions for hydrothermal activity , 2011 .

[4]  P. Schenk Thickness consb ints on the icy shells of the galilean satellites from a comparison of crater shapes , 2022 .

[5]  R. Grieve,et al.  Constraints on the formation of ring impact structures, based on terrestrial data , 1981 .

[6]  Bernard H. Foing,et al.  Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars , 2005, Nature.

[7]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[8]  N. Artemieva,et al.  Ries crater and suevite revisited—Observations and modeling Part I: Observations , 2013 .

[9]  Pascal Lee,et al.  The impact crater as a habitat: effects of impact processing of target materials. , 2003, Astrobiology.

[10]  Clark R. Chapman,et al.  The variability of crater identification among expert and community crater analysts , 2014, 1404.1334.

[11]  G. B. Dalrymple,et al.  40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step‐heating and their bearing on the history of lunar basin formation , 1993 .

[12]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[13]  David P. O'Brien,et al.  Itokawa's cratering record as observed by Hayabusa: Implications for its age and collisional history , 2009 .

[14]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[15]  A. Basilevsky,et al.  Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera , 2004, Nature.

[16]  B. Dressler,et al.  Terrestrial impact melt rocks and glasses , 2001 .

[17]  J. Kargel,et al.  Small‐scale Martian polygonal terrain: Implications for liquid surface water , 2001 .

[18]  D. Kring,et al.  Quantifying the attenuation of structural uplift beneath large lunar craters , 2013 .

[19]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[20]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[21]  G. Komatsu,et al.  A global inventory of central pit craters on the Moon: Distribution, morphology, and geometry , 2014 .

[22]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[23]  Willy Benz,et al.  Collisional stripping of Mercury's mantle , 1988 .

[24]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[25]  Gordon R. Osinski,et al.  Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[26]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[27]  Alexander G. Hayes,et al.  Reconstruction of eolian bed forms and paleocurrents from cross‐bedded strata at Victoria Crater, Meridiani Planum, Mars , 2010 .

[28]  T. McCord,et al.  Alteration of Lunar Optical Properties: Age and Composition Effects , 1971, Science.

[29]  H. J. Moore,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 1978 .

[30]  L. Tanner,et al.  Assessing the record and causes of Late Triassic extinctions , 2004 .

[31]  Peter H. Schultz,et al.  Atmospheric effects on ejecta emplacement , 1992 .

[32]  P. Spudis,et al.  A new technique for estimating the thickness of mare basalts in Imbrium Basin , 2009 .

[33]  M. Cintala,et al.  Interior morphology of fresh Martian craters - The effects of target characteristics , 1978 .

[34]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[35]  G. Ryder,et al.  Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System , 2001 .

[36]  M. Gurnis,et al.  Interpreting the cratering record - Mercury to Ganymede and Callisto , 1982 .

[37]  N. Barlow,et al.  Martian pedestal craters: Marginal sublimation pits implicate a climate‐related formation mechanism , 2008 .

[38]  V. Oberbeck,et al.  Laboratory simulation of the herringbone pattern associated with lunar secondary crater chains , 1974 .

[39]  F. Hörz,et al.  Bunte Breccia of the Ries: Continuous deposits of large impact craters , 1983 .

[40]  The Origin of Planetary Impactors in the Inner Solar System , 2005, Science.

[41]  V. Sharpton Outcrops on lunar crater rims: Implications for rim construction mechanisms, ejecta volumes and excavation depths , 2014 .

[42]  Elisabetta Pierazzo,et al.  The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary , 2010, Science.

[43]  J. Spray,et al.  The nature of the groundmass of surficial suevite from the Ries impact structure, Germany, and constraints on its origin , 2004 .

[44]  Scot C. R. Rafkin,et al.  Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages , 2011 .

[45]  N. Barlow A review of Martian impact crater ejecta structures and their implications for target properties , 2005 .

[46]  David E. Smith,et al.  Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission , 2013, Science.

[47]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[48]  François Costard,et al.  Standardizing the nomenclature of Martian impact crater ejecta morphologies , 2000 .

[49]  A. McEwen,et al.  Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process , 2012 .

[50]  D. Leverington,et al.  A Large Paleolake Basin at the Head of Ma'adim Vallis, Mars , 2002, Science.

[51]  C. Russell,et al.  Pitted Terrain on Vesta and Implications for the Presence of Volatiles , 2012, Science.

[52]  M. Warner,et al.  Deep crustal structure of the Chicxulub impact crater , 2001 .

[53]  N. Barlow,et al.  Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement , 2010 .

[54]  H. Melosh,et al.  The theoretical plausibility of central pit crater formation via melt drainage , 2012 .

[55]  N. Barlow,et al.  Pedestal crater heights on Mars: A proxy for the thicknesses of past, ice-rich, Amazonian deposits , 2010 .

[56]  O. Barnouin-Jha,et al.  The formation of fluidized ejecta on Mars by granular flows , 2006 .

[57]  D. Kring,et al.  Rim uplift and crater shape in Meteor Crater: Effects of target heterogeneities and trajectory obliquity , 2009 .

[58]  William F. Bottke,et al.  An asteroid breakup 160 Myr ago as the probable source of the K/T impactor , 2007, Nature.

[59]  M. Pilkington,et al.  Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico , 1991 .

[60]  R. Canup,et al.  ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA , 2011 .

[61]  H. Newsom,et al.  Location and sampling of aqueous and hydrothermal deposits in martian impact craters. , 2001, Astrobiology.

[62]  H. Cooper A summary of explosion cratering phenomena relevant to meteor impact events , 1977 .

[63]  G. Fielder Ray Elements and Secondary-Impact Craters on the Moon. , 1962 .

[64]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[65]  R. Jaumann,et al.  Vesta’s Shape and Morphology , 2012, Science.

[66]  C. Sotin,et al.  A newly discovered impact crater in Titan's Senkyo: Cassini VIMS observations and comparison with other impact features , 2012 .

[67]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[68]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[69]  M. Ćuk,et al.  Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning , 2012, Science.

[70]  N. Barlow,et al.  Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters , 2014 .

[71]  Richard J. Pike,et al.  Geomorphology of impact craters on Mercury , 1988 .

[72]  Alfred S. McEwen,et al.  The current martian cratering rate , 2010 .

[73]  William M. Farrell,et al.  MARSIS radar sounder evidence of buried basins in the northern lowlands of Mars , 2006, Nature.

[74]  John F. McCauley,et al.  Mariner 9 evidence for wind erosion in the equatorial and mid‐latitude regions of Mars , 1973 .

[75]  R. Kirk,et al.  Crater Topography on Titan: Implications for Landscape Evolution , 2013 .

[76]  Jürgen Oberst,et al.  Hollows on Mercury: MESSENGER Evidence for Geologically Recent Volatile-Related Activity , 2011, Science.

[77]  N. Barlow,et al.  How much material do the radar-bright craters at the Mercurian poles contain? , 2005 .

[78]  David E. Smith,et al.  Investigating the origin of candidate lava channels on Mercury with MESSENGER data: Theory and observations , 2013 .

[79]  J. Head,et al.  Crater‐associated dark diffuse features on Venus: Properties of surficial deposits and their evolution , 2009 .

[80]  H. J. Melosh,et al.  Hydrocode simulation of Ganymede and Europa cratering trends – How thick is Europa’s crust? , 2014 .

[81]  M. Nordyke NUCLEAR CRATERS AND PRELIMINARY THEORY OF THE MECHANICS OF EXPLOSIVE CRATER FORMATION , 1961 .

[82]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[83]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[84]  C. Koeberl,et al.  Petrography of impact glasses and melt breccias from the El'gygytgyn impact structure, Russia , 2013 .

[85]  Bevan M. French,et al.  Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .

[86]  James B. Garvin,et al.  North Polar Region Craterforms on Mars: Geometric Characteristics from the Mars Orbiter Laser Altimeter , 2000 .

[87]  Raymond E. Arvidson,et al.  Ground ice at the Phoenix Landing Site: Stability state and origin , 2009 .

[88]  Donald E. Gault,et al.  Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks , 1973 .

[89]  K. Keil,et al.  Fluidization and hydrothermal alteration of the suevite deposit at the Ries Crater, West Germany, and implications for Mars , 1986 .

[90]  T. Titus,et al.  Mars Global Digital Dune Database (MGD 3 ): Global dune distribution and wind pattern observations , 2014 .

[91]  Caltech,et al.  SPITZER INFRARED SPECTROMETER 16 μm OBSERVATIONS OF THE GOODS FIELDS , 2010, 1010.1797.

[92]  Alfred S. McEwen,et al.  THE IMPORTANCE OF SECONDARY CRATERING TO AGE CONSTRAINTS ON PLANETARY SURFACES , 2006 .

[93]  K. Wohletz,et al.  Martian rampart crater ejecta - Experiments and analysis of melt-water interaction , 1983 .

[94]  J. Moore,et al.  Sublimation-driven erosion on Hyperion: Topographic analysis and landform simulation model tests , 2012 .

[95]  Charles S. Cockell,et al.  Impact-generated hydrothermal systems on Earth and Mars , 2013 .

[96]  V. Oberbeck Laboratory simulation of impact cratering with high explosives , 1971 .

[97]  P. Mouginis-Mark,et al.  Possible impact melt and debris flows at Tooting Crater, Mars , 2010 .

[98]  W. Hartmann Martian cratering 9: Toward resolution of the controversy about small craters , 2007 .

[99]  G. B. Dalrymple,et al.  Argon-40/Argon-39 Age Spectra of Apollo 17 Highlands Breccia Samples by Laser Step Heating and the Age of the Serenitatis Basin , 1996 .

[100]  Kenneth S Edgett,et al.  Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.

[101]  Eugene M. Shoemaker,et al.  Impact mechanics at Meteor Crater, Arizona , 1959 .

[102]  R. Canup,et al.  A Giant Impact Origin of Pluto-Charon , 2005, Science.

[103]  OCEANOGRAPHY FROM SPACE , 1984 .

[104]  N. Barlow,et al.  Latitude dependence of Martian pedestal craters: Evidence for a sublimation‐driven formation mechanism , 2009 .

[105]  G. Komatsu,et al.  Impact craters with ejecta flows and central pits on Mercury , 2013 .

[106]  V. Oberbeck The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy , 1975 .

[107]  W. Hartmann,et al.  Nature of the Martian uplands: Effect on Martian meteorite age distribution and secondary cratering , 2006 .

[108]  S. Werner,et al.  Why is the areoid like the residual geoid? , 2012 .

[109]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[110]  Patrick Martin,et al.  Copernicus: A Regional Probe of the Lunar Interior , 1993, Science.

[111]  P. McGovern,et al.  Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater , 2010 .

[112]  E. Shoemaker Interpretation of Lunar Craters , 1962 .

[113]  William K. Hartmann,et al.  Cratering Records in the Inner Solar System in Relation to the Lunar Reference System , 2001 .

[114]  S. Croft Scaling of Complex Craters , 1985 .

[115]  Faith Vilas,et al.  Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region , 2012 .

[116]  Richard J. Pike,et al.  Control of crater morphology by gravity and target type - Mars, earth, moon , 1980 .

[117]  Donald S. Burnett,et al.  Lunar surface processes , 1992 .

[118]  M. Zuber,et al.  The Borealis basin and the origin of the martian crustal dichotomy , 2008, Nature.

[119]  O. Aharonson,et al.  Stability and exchange of subsurface ice on Mars , 2005 .

[120]  Gordon R. Osinski,et al.  Impact ejecta emplacement on terrestrial planets , 2011 .

[121]  Steven W. Squyres,et al.  The martian hemispheric dichotomy may be due to a giant impact , 1984, Nature.

[122]  James W. Head,et al.  Radial thickness variation in impact crater ejecta - Implications for lunar basin deposits , 1973 .

[123]  M. W. Buie,et al.  A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt , 2006, Nature.

[124]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[125]  N. Barlow,et al.  Mercurian impact craters: Implications for polar ground ice , 1999 .

[126]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[127]  P. Schultz Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan , 1992 .

[128]  H. Melosh,et al.  Ganymede crater dimensions - Implications for central peak and central pit formation and development , 2012 .

[129]  K. Zahnle,et al.  The Role of Ejecta in the Small Crater Populations on the Mid-Sized Saturnian Satellites , 2011, 1105.2601.

[130]  Cesare Barbieri,et al.  Identification and physical properties of craters on Asteroid (2867) Steins , 2012 .

[131]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[132]  Qinghui Liu,et al.  An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features , 2010 .

[133]  E. M. Shoemaker,et al.  Craters and basins on Ganymede and Callisto - Morphological indicators of crustal evolution , 1982 .

[134]  Confirmation and utilization of the “production function” size‐frequency distributions of Martian impact craters , 2008 .

[135]  H. Melosh,et al.  Hydrocode simulations of Chicxulub crater collapse and peak-ring formation , 2002 .

[136]  G. Kuiper,et al.  The Moon Meteorites and Comets , 1963 .

[137]  R. Greeley,et al.  Martian impact craters and emplacement of ejecta by surface flow , 1977 .

[138]  S. Squyres,et al.  Hydrothermal systems associated with martian impact craters , 2002 .

[139]  W. Hartmann,et al.  Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships , 2005 .

[140]  A. Neubeck,et al.  Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden , 2010, International Journal of Astrobiology.

[141]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[142]  P. Schultz,et al.  Investigating the interactions between an atmosphere and an ejecta curtain: 1. Wind tunnel tests , 1999 .

[143]  H. Demura,et al.  A shallow volatile layer at Chryse Planitia, Mars , 1998 .

[144]  J. Burns,et al.  Impact seeding and reseeding in the inner solar system. , 2005, Astrobiology.

[145]  D. Gault,et al.  Experimental studies of oblique impact. , 1978 .

[146]  William K. Hartmann,et al.  Satellite-Sized Planetesimals and Lunar Origin , 1975 .

[147]  M. Mellon,et al.  Geographic variations in the thermal and diffusive stability of ground ice on Mars , 1993 .

[148]  A. Harris,et al.  Dynamical constraints on the formation and evolution of planetary bodies , 1982 .

[149]  David E. Smith,et al.  Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units , 2013 .

[150]  P. Mouginis-Mark,et al.  Emplacement of Martian rampart crater deposits , 2005 .

[151]  P. Mouginis-Mark,et al.  Origin of small pits in martian impact craters , 2012 .

[152]  James B. Garvin,et al.  Geometric properties of Martian impact craters: Preliminary results from the Mars Orbiter Laser Altimeter , 1998 .

[153]  A. McEwen,et al.  Layered MegaBlocks in the central uplifts of impact craters , 2012 .

[154]  V. Safronov,et al.  Relative sizes of the largest bodies during the accumulation of planets , 1969 .

[155]  C. Sotin,et al.  Geology of the Selk crater region on Titan from Cassini VIMS observations , 2010 .

[156]  Erik Asphaug,et al.  Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets , 2008 .

[157]  David A. Kring,et al.  Impact‐induced hydrothermal activity on early Mars , 2005 .

[158]  V. Oberbeck A mechanism for the production of lunar crater rays , 1971 .

[159]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[160]  P. Cassen,et al.  One-dimensional calculations of a large impact on Uranus☆ , 1990 .

[161]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[162]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[163]  P. Mouginis-Mark,et al.  Martian craters viewed by the Thermal Emission Imaging System instrument: Double‐layered ejecta craters , 2006 .

[164]  A. Dombard,et al.  Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto , 2006 .

[165]  Gordon R. Osinski,et al.  Global Distribution of Lunar Impact Melt Flows , 2014 .

[166]  M. Mellon,et al.  Effects of soil heterogeneity on martian ground-ice stability and orbital estimates of ice table depth , 2005 .

[167]  C. Pieters,et al.  Copernicus Crater Central Peak: Lunar Mountain of Unique Composition , 1982, Science.

[168]  R. Arvidson,et al.  Latitudinal variation of wind erosion of crater ejecta deposits on Mars , 1976 .

[169]  J. Grant,et al.  Crater gradation in Gusev crater and Meridiani Planum, Mars , 2006 .

[170]  S. Runcorn Book reviewMulti-Ring Basins: Proceedings of Lunar and Planetary Science, Pergamon Press, 1981, Volume 12, Part A, 288 pp., US $35.00, £22.00, ISBN 0-08-028045-5 , 1984 .

[171]  J. Tromp,et al.  Antipodal focusing of seismic waves due to large meteorite impacts on Earth , 2011 .

[172]  Bruce A. Campbell,et al.  Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo , 2004 .

[173]  S. V. Gasselt,et al.  Seasonal variations of polygonal thermal contraction crack patterns in a south polar trough, Mars , 2005 .

[174]  S. Stewart,et al.  Modeling the morphological diversity of impact craters on icy satellites , 2011 .

[175]  G. Cremonese,et al.  A NEW CHRONOLOGY FOR THE MOON AND MERCURY , 2008, 0903.5137.

[176]  Shane Byrne,et al.  HiRISE observations of new impact craters exposing Martian ground ice , 2014 .

[177]  C. McKay,et al.  Origins of life: A comparison of theories and application to Mars , 1996, Origins of life and evolution of the biosphere.

[178]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[179]  Rosaly M. C. Lopes,et al.  Geomorphologic mapping of the Menrva region of Titan using Cassini RADAR data , 2011 .

[180]  M. Gaffey,et al.  Mineralogical characterization of Baptistina Asteroid Family: Implications for K/T impactor source , 2011, 1110.3414.

[181]  Rosaly M. C. Lopes,et al.  Impact craters on Titan , 2010 .

[182]  Christian Koeberl,et al.  The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why , 2010 .

[183]  G. Polkowski,et al.  Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta , 1975 .

[184]  Grant Heiken,et al.  Book-Review - Lunar Sourcebook - a User's Guide to the Moon , 1991 .

[185]  N. Barlow,et al.  Central pit craters on Ganymede , 2011 .

[186]  S. Squyres,et al.  formation of Crater Palimpsests on Ganymede , 1990 .

[187]  D. Gault,et al.  Seismic effects from major basin formations on the moon and mercury , 1975 .

[188]  C. Chyba,et al.  The violent environment of the origin of life. , 1993 .

[189]  R. Grieve,et al.  Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies , 1996 .

[190]  M. Warner,et al.  Mantle deformation beneath the Chicxulub impact crater , 2009 .

[191]  S. Squyres,et al.  Geomorphic Evidence for the Distribution of Ground Ice on Mars , 1986, Science.

[192]  J. Garvin,et al.  A geometric model for excavation and modification at terrestrial simple impact craters , 1984 .

[193]  Harold F. Levison,et al.  Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture , 2007, 0706.1713.

[194]  P. Schenk Central pit and dome craters: Exposing the interiors of Ganymede and Callisto , 1993 .

[195]  V. Oberbeck Layered ejecta craters and the early water/ice aquifer on Mars , 2009 .

[196]  P. Renne,et al.  Lunar impact history from (40)Ar/(39)Ar dating of glass spherules , 2000, Science.

[197]  J. Grant,et al.  Erosion rates at the Mars Exploration Rover landing sites and long‐term climate change on Mars , 2006 .

[198]  J. Dohm,et al.  Evidence for Hesperian impact-induced hydrothermalism on Mars , 2010 .

[199]  G. Neukum,et al.  Combinations of processes responsible for Martian impact crater “layered ejecta structures” emplacement , 2007 .

[200]  R. Dietz Impact and explosion cratering—planetary and terrestrial implications: edited by D. J. Roddy, R. O. Pepin and R. B. Merrill. Pergamon Press, U.S.$137.50. 1301 pp., 1977 , 1979 .

[201]  Brian M. Hynek,et al.  Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production , 2011 .

[202]  P. Schultz,et al.  Investigating the interactions between an atmosphere and an ejecta curtain: 2. Numerical experiments , 1999 .

[203]  A. McEwen,et al.  Identification of large (2-10 km) rayed craters on Mars in THEMIS thermal infrared images: Implications for possible Martian meteorite source regions , 2006 .

[204]  W. Benz,et al.  The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions , 2013, Nature.

[205]  H. Melosh,et al.  Impact spherules as a record of an ancient heavy bombardment of Earth , 2012, Nature.

[206]  S. K. Croft,et al.  A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto , 1983 .

[207]  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[208]  David J. Williams,et al.  The Geologically Recent Giant Impact Basins at Vesta’s South Pole , 2012, Science.

[209]  Clark R. Chapman,et al.  Mercury Cratering Record Viewed from MESSENGER's First Flyby , 2008, Science.

[210]  J. Head,et al.  Morphology and origin of palimpsests on Ganymede based on Galileo observations , 2003 .

[211]  Kevin R. Housen,et al.  Some recent advances in the scaling of impact and explosion cratering , 1987 .

[212]  N. Cabrol,et al.  Distribution, Classification, and Ages of Martian Impact Crater Lakes , 1999 .

[213]  A. S. Kiran Kumar,et al.  Gullies and landslides on the Moon: Evidence for dry‐granular flows , 2013 .

[214]  E. Shoemaker,et al.  New evidence for the impact origin of the Ries Basin, Bavaria, Germany , 1961 .

[215]  W. Hartmann Megaregolith evolution and cratering cataclysm models—Lunar cataclysm as a misconception (28 years later) , 2003 .

[216]  P. Thomas,et al.  Seismic resurfacing by a single impact on the asteroid 433 Eros , 2005, Nature.

[217]  C. Chapman,et al.  Cratering of planetary satellites. , 1986 .

[218]  B. Cohen,et al.  Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. , 2000, Science.

[219]  L. Keszthelyi,et al.  Physical constraints on impact melt properties from Lunar Reconnaissance Orbiter Camera images , 2012 .

[220]  R. Canup Forming a Moon with an Earth-like Composition via a Giant Impact , 2012, Science.

[221]  Brandon C. Johnson,et al.  Formation of spherules in impact produced vapor plumes , 2012 .

[222]  E. Asphaug,et al.  Modeling global impact effects on middle-sized icy bodies: applications to Saturn's moons , 2004 .

[223]  S. Squyres,et al.  "Softened" Impact Craters on Mars: Implications for Ground Ice and the Structure of the Martian Megaregolith , 1993 .

[224]  K. A. Holsapple,et al.  On the Scaling of Crater Dimensions 2. Impact Processes , 1982 .

[225]  I. Crawford,et al.  Individual lava flow thicknesses in Oceanus Procellarum and Mare Serenitatis determined from Clementine multispectral data , 2010 .

[226]  James W. Head,et al.  New morphometric measurements of craters and basins on Mercury and the Moon from MESSENGER and LRO altimetry and image data: An observational framework for evaluating models of peak-ring basin formation , 2013 .

[227]  Kevin Zahnle,et al.  Secondary and sesquinary craters on Europa , 2008 .

[228]  F. Costard The spatial distribution of volatiles in the Martian hydrolithosphere , 1989 .

[229]  D. Kring,et al.  Numerical modeling of impact‐induced hydrothermal activity at the Chicxulub crater , 2006 .

[230]  Clark R. Chapman,et al.  Secondary craters on Europa and implications for cratered surfaces , 2005, Nature.

[231]  J. Head,et al.  Deformation Associated with Ghost Craters and Basins in Volcanic Smooth Plains on Mercury: Strain Analysis and Implications for Plains Evolution , 2012 .

[232]  S. V. Gasselt,et al.  Ages of rampart craters in equatorial regions on Mars: Implications for the past and present distribution of ground ice , 2006 .

[233]  J. Morgan,et al.  The evolution of the Onaping Formation at the Sudbury impact structure , 2010 .

[234]  S. K. Croft,et al.  Cratering flow fields - Implications for the excavation and transient expansion stages of crater formation , 1980 .

[235]  W. Alvarez,et al.  Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. , 2003, Astrobiology.

[236]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[237]  G. Collins,et al.  Mid‐sized complex crater formation in mixed crystalline‐sedimentary targets: Insight from modeling and observation , 2008 .

[238]  Paul G. Lucey,et al.  The distribution of olivine in the Crater Copernicus , 1991 .

[239]  R. Canup,et al.  Accretion of the Moon from an Impact-Generated Disk , 1995 .

[240]  P. Mouginis-Mark,et al.  Deep impact craters in the Isidis and southwestern Utopia Planitia regions of Mars: High target material strength as a possible cause , 2006 .

[241]  James H. Roark,et al.  Ancient lowlands on Mars , 2002 .

[242]  H Y McSween,et al.  Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta , 2012, Science.

[243]  T. Kenkmann,et al.  Radial transpression ridges: A new structural feature of complex impact craters , 2000 .

[244]  D. Gault,et al.  Atmospheric effects on Martian ejecta emplacement , 1979 .

[245]  Stephanie C. Werner,et al.  Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains , 2009 .

[246]  Mark J. Cintala,et al.  Scaling impact melting and crater dimensions: Implications for the lunar cratering record , 1998 .

[247]  B. Ivanov Numerical Modeling of the Largest Terrestrial Meteorite Craters , 2005 .

[248]  M. Zuber,et al.  Seismic effects of the Caloris basin impact, Mercury , 2011 .

[249]  S. Kieffer,et al.  Impact melt sheet formation on Mars and its implication for hydrothermal systems and exobiology , 2006 .

[250]  David A. Kring,et al.  Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga , 2002 .

[251]  N. Barlow,et al.  Variations in the onset diameter for Martian layered ejecta morphologies and their implications for subsurface volatile reservoirs , 2001 .

[252]  Clark R. Chapman,et al.  Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains , 2009 .

[253]  R. Craddock,et al.  CRATER DEGRADATION IN THE MARTIAN HIGHLANDS: MORPHOMETRIC ANALYSIS OF THE SINUS SABAEUS REGION AND SIMULATION MODELING SUGGEST FLUVIAL PROCESSES. N. Forsberg-Taylor , 2004 .

[254]  Randolph L. Kirk,et al.  The rayed crater Zunil and interpretations of small impact craters on Mars , 2005 .

[255]  C. Allen Central peaks in lunar craters , 1975 .