Recovery methods for evolution and nonlinear problems
暂无分享,去创建一个
[1] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[2] Ricardo H. Nochetto,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[3] Xiaobing Feng,et al. Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation , 2007, J. Sci. Comput..
[4] Pedro Morin,et al. On Convex Functions and the Finite Element Method , 2008, SIAM J. Numer. Anal..
[5] F. Brezzi,et al. Finite dimensional approximation of nonlinear problems , 1981 .
[6] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[7] Jinhai Chen,et al. Convergence behaviour of inexact Newton methods under weak Lipschitz condition , 2006 .
[8] H. Stetter. Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .
[9] Xue-Cheng Tai,et al. Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..
[10] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[11] N. Krylov. On the general notion of fully nonlinear second-order elliptic equations , 1995 .
[12] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[13] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[14] Alfred H. Schatz. SOME NEW LOCAL ERROR ESTIMATES IN NEGATIVE NORMS WITH AN APPLICATION TO LOCAL A POSTERIORI ERROR ESTIMATION , 2006 .
[15] Mark Ainsworth,et al. A Posteriori Error Estimators and Adaptivity for Finite Element Approximation of the Non-Homogeneous Dirichlet Problem , 2001, Adv. Comput. Math..
[16] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[17] Zhimin Zhang. A Posteriori Error Estimates on Irregular Grids Based on Gradient Recovery , 2001, Adv. Comput. Math..
[18] Carsten Carstensen,et al. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..
[19] O. Lakkis,et al. Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.
[20] Jeffrey S. Ovall. Function, Gradient, and Hessian Recovery Using Quadratic Edge-Bump Functions , 2007, SIAM J. Numer. Anal..
[21] Yuri V. Vassilevski,et al. On a discrete Hessian recovery for P 1 finite elements , 2002, J. Num. Math..
[22] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[23] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[24] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[25] A. Schmidt,et al. Design of Adaptive Finite Element Software , 2005 .
[26] R. Jensen. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .
[27] Omar Lakkis,et al. A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems , 2008, SIAM J. Numer. Anal..
[28] Nils-Erik Wiberg,et al. Adaptive procedure with superconvergent patch recovery for linear parabolic problems , 1997 .
[29] Alan Demlow,et al. A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..
[30] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[31] Christine Bernardi,et al. A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..
[32] Endre Süli,et al. Sparse finite element approximation of high-dimensional transport-dominated diffusion problems , 2008 .
[33] Roland Glowinski,et al. Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .
[34] Volker John,et al. A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .
[35] Eun-Jae Park,et al. Mixed finite element methods for nonlinear second-order elliptic problems , 1995 .
[36] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[37] Bo Li,et al. Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .
[38] Klaus Böhmer,et al. On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order , 2008, SIAM J. Numer. Anal..
[39] Jinchao Xu,et al. Recent Progress in Computational and Applied PDES , 2002 .
[40] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[41] Zhimin Zhang,et al. Superconvergence of the Derivative Patch Recovery Technique and A Posteriori Error Estimation , 1995 .
[42] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[43] Mary Fanett. A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .
[44] Omar Lakkis,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[45] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[46] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[47] Adam M. Oberman. A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions , 2004, Math. Comput..
[48] R. Verfürth. A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .
[49] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[50] Lars B. Wahlbin,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part II: The piecewise linear case , 2004, Math. Comput..
[51] M. Picasso. Adaptive finite elements for a linear parabolic problem , 1998 .
[52] Wenbin Liu,et al. A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm , 2006, Math. Comput..
[53] Dmitriy Leykekhman,et al. A posteriori error estimates by recovered gradients in parabolic finite element equations , 2008 .
[54] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[55] Panagiotis E. Souganidis,et al. A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs , 2008 .
[56] Dmitriy Leykekhman,et al. Pointwise localized error estimates for parabolic finite element equations , 2004, Numerische Mathematik.
[57] Andreas Veeser,et al. A posteriori error estimators, gradient recovery by averaging, and superconvergence , 2006, Numerische Mathematik.