Randomized algorithms and upper bounds for multiple domination in graphs and networks

We consider four different types of multiple domination and provide new improved upper bounds for the k- and k-tuple domination numbers. They generalize two classical bounds for the domination number and are better than a number of known upper bounds for these two multiple domination parameters. Also, we explicitly present and systematize randomized algorithms for finding multiple dominating sets, whose expected orders satisfy new and recent upper bounds. The algorithms for k- and k-tuple dominating sets are of linear time in terms of the number of edges of the input graph, and they can be implemented as local distributed algorithms. Note that the corresponding multiple domination problems are known to be NP-complete.

[1]  Lonnie Athens ‘Domination’ , 2002 .

[2]  Gerard J. Chang The upper bound on k-tuple domination numbers of graphs , 2008, Eur. J. Comb..

[3]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[4]  Odile Favaron,et al.  On k-domination and minimum degree in graphs , 2008 .

[5]  Weiping Shang,et al.  Algorithms for Minimum m -Connected k -Dominating Set Problem , 2007, COCOA.

[6]  Richard E. Neapolitan,et al.  Foundations Of Algorithms Using Java Pseudocode , 2004 .

[7]  Weiping Shang,et al.  Algorithms for minimum m-connected k-tuple dominating set problem , 2007, Theor. Comput. Sci..

[8]  Dieter Rautenbach,et al.  New bounds on the k-domination number and the k-tuple domination number , 2007, Appl. Math. Lett..

[9]  Tim Nieberg Distributed Algorithms in Wireless Sensor Networks , 2003, Electron. Notes Discret. Math..

[10]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[11]  Vadim E. Zverovich The k-tuple domination number revisited , 2008, Appl. Math. Lett..

[12]  Michael A. Henning,et al.  On Double Domination in Graphs , 2005, Discuss. Math. Graph Theory.

[13]  Andrei V. Gagarin,et al.  Upper Bounds for α-Domination Parameters , 2009, Graphs Comb..

[14]  Jie Wu,et al.  On constructing k-connected k-dominating set in wireless ad hoc and sensor networks , 2006, J. Parallel Distributed Comput..

[15]  Jean E. Dunbar,et al.  alpha-Domination , 2000, Discret. Math..

[16]  Ning Zhang,et al.  On approximation algorithms of k-connected m-dominating sets in disk graphs , 2007, Theor. Comput. Sci..

[17]  Christian Laforest,et al.  Hardness results and approximation algorithms of k-tuple domination in graphs , 2004, Inf. Process. Lett..

[18]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[19]  Andrei V. Gagarin,et al.  A generalised upper bound for the k-tuple domination number , 2008, Discret. Math..

[20]  Adriana Hansberg Bounds on the connected k-domination number in graphs , 2010, Discret. Appl. Math..

[21]  Rolf Niedermeier,et al.  Experiments on data reduction for optimal domination in networks , 2006, Ann. Oper. Res..

[22]  Colin Cooper,et al.  Lower Bounds and Algorithms for Dominating Sets in Web Graphs , 2005, Internet Math..