Adaptive Wavelet Schwarz Methods for the Navier-Stokes Equation

ABSTRACT In this article, we are concerned with domain decomposition methods for the stationary incompressible Navier-Stokes equation. We construct an adaptive additive Schwarz method based on discretization by means of a divergence-free wavelet frame. We prove that the method is convergent and asymptotically optimal with respect to the degrees of freedom involved.

[1]  R. Schilling,et al.  Weak Order for the Discretization of the Stochastic Heat Equation Driven by Impulsive Noise , 2009, 0911.4681.

[2]  F. Eckhardt Besov regularity for the Stokes and the Navier‐Stokes system in polyhedral domains , 2015 .

[3]  Christian Bender,et al.  A Posteriori Estimates for Backward SDEs , 2013, SIAM/ASA J. Uncertain. Quantification.

[4]  Hermann G. Matthies,et al.  Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .

[5]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[6]  Wang-Q Lim,et al.  Compactly Supported Shearlets , 2010, 1009.4359.

[7]  Rob Stevenson Divergence-Free Wavelets on the Hypercube: General Boundary Conditions , 2016 .

[8]  A. Uschmajew,et al.  LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR OPTIMIZATION OF CONVEX PROBLEMS IN THE TT FORMAT , 2011 .

[9]  Rob P. Stevenson,et al.  A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems , 2009, Math. Comput..

[10]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[11]  Armin Iske,et al.  Optimal representation of piecewise Hölder smooth bivariate functions by the Easy Path Wavelet Transform , 2013, J. Approx. Theory.

[12]  Winfried Sickel,et al.  Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .

[13]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[14]  Winfried Sickel,et al.  Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .

[15]  Steffen Dereich,et al.  Foundations of Computational Mathematics, Budapest 2011: On the Complexity of Computing Quadrature Formulas for SDEs , 2012 .

[16]  Klaus Ritter,et al.  Derandomization of the Euler scheme for scalar stochastic differential equations , 2012, J. Complex..

[17]  R. Schneider,et al.  The Alternating Linear Scheme for Tensor Optimisation in the TT Format , 2022 .

[18]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces , 2012, Numerische Mathematik.

[19]  Hermann G. Matthies,et al.  Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..

[20]  Tobias Jahnke,et al.  On Reduced Models for the Chemical Master Equation , 2011, Multiscale Model. Simul..

[21]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[22]  Stephan Dahlke Besov Regularity for the Stokes Problem , 1999 .

[23]  Felix Lindner,et al.  Singular behavior of the solution to the stochastic heat equation on a polygonal domain , 2013, Stochastic Partial Differential Equations: Analysis and Computations.

[24]  Christian Bender,et al.  Error Criteria for Numerical Solutions of Backward SDEs , 2010 .

[25]  Wolfgang Dahmen,et al.  Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.

[26]  W. Hackbusch,et al.  On the nonlinear domain decomposition method , 1997 .

[27]  G. Kutyniok,et al.  Irregular Shearlet Frames: Geometry and Approximation Properties , 2010, 1002.2657.

[28]  Henryk Wozniakowski,et al.  The curse of dimensionality for numerical integration of smooth functions , 2012, Math. Comput..

[29]  Henryk Wozniakowski,et al.  Discontinuous information in the worst case and randomized settings , 2011, 1106.2945.

[30]  Thorsten Rohwedder,et al.  The continuous Coupled Cluster formulation for the electronic Schrödinger equation , 2013 .

[31]  Konstantin Grella,et al.  Sparse tensor spherical harmonics approximation in radiative transfer , 2011, J. Comput. Phys..

[32]  Wolfgang Hackbusch,et al.  Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.

[33]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[34]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[35]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions multiplied by explicit correlation factors , 2011 .

[36]  Reinhold Schneider,et al.  Error estimates for the Coupled Cluster method , 2013 .

[37]  Wolfgang Hackbusch,et al.  An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..

[38]  R. Temam Navier-Stokes Equations , 1977 .

[39]  Sadegh Jokar,et al.  Sparse recovery and Kronecker products , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[40]  Wang-Q Lim,et al.  Shearlets on Bounded Domains , 2010, 1007.3039.

[41]  G. Teschke,et al.  Inversion of the noisy Radon transform on SO(3) by Gabor frames and sparse recovery principles , 2011 .

[42]  Tobias Jahnke,et al.  Solving chemical master equations by adaptive wavelet compression , 2010, J. Comput. Phys..

[43]  Ole Christensen,et al.  Frames and Bases , 2008 .

[44]  Reinhold Schneider,et al.  An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .

[45]  S. Dereich,et al.  Constructive quantization: Approximation by empirical measures , 2011, 1108.5346.

[46]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin methods for first order transport equations , 2011 .

[47]  Elisabeth Ullmann,et al.  Stochastic Galerkin Matrices , 2010, SIAM J. Matrix Anal. Appl..

[48]  G. Teschke,et al.  Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .

[49]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[50]  Stephan Dahlke,et al.  Piecewise tensor product wavelet bases by extensions and approximation rates , 2013, Math. Comput..

[51]  Winfried Sickel,et al.  On Besov regularity of solutions to nonlinear elliptic partial differential equations , 2020, Nonlinear Analysis.

[52]  D. Rudolf,et al.  Explicit error bounds for Markov chain Monte Carlo , 2011, 1108.3201.

[53]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[54]  Wolfgang Dahmen,et al.  Approximation of High-Dimensional Rank One Tensors , 2013, Constructive Approximation.

[55]  N. Faustino A Wavelet-Galerkin Scheme for the Navier-Stokes , 2006 .

[56]  Lars Grasedyck,et al.  Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .

[57]  Gitta Kutyniok,et al.  Data Separation by Sparse Representations , 2011, Compressed Sensing.

[58]  Stephan Dahlke,et al.  Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains , 2012, Int. J. Comput. Math..

[59]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..

[60]  Michael Gnewuch,et al.  On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..

[61]  Armin Iske,et al.  Curvature analysis of frequency modulated manifolds in dimensionality reduction , 2011 .

[62]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[63]  Michael Griebel,et al.  An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations , 2012, Journal of Scientific Computing.

[64]  M. Hansen,et al.  n-term approximation rates and Besov regularity for elliptic PDEs on polyhedral domains , 2012 .

[65]  Stephan Dahlke,et al.  A note on quarkonial systems and multilevel partition of unity methods , 2013 .

[66]  Petru A. Cioica,et al.  On the $L_q(L_p)$-regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains , 2013, 1301.1180.

[67]  H. Yserentant,et al.  On the Complexity of the Electronic Schrödinger Equation , 2022 .

[68]  Simen Kvaal,et al.  Multiconfigurational time-dependent Hartree method to describe particle loss due to absorbing boundary conditions , 2011, 1102.3899.

[69]  E. Ullmann,et al.  Preconditioning Stochastic Galerkin Saddle Point Problems , 2022 .

[70]  Dajana Conte,et al.  Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .

[71]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[72]  Torsten Görner,et al.  Efficient and accurate computation of spherical mean values at scattered center points , 2012 .

[73]  Christian Bender,et al.  Primal and Dual Pricing of Multiple Exercise Options in Continuous Time , 2011, SIAM J. Financial Math..

[74]  D. Crisan,et al.  Robust filtering: Correlated noise and multidimensional observation , 2012, 1201.1858.

[75]  Dominik Lellek Adaptive wavelet frame domain decomposition methods for nonlinear elliptic equations , 2013 .

[77]  Wolfgang Dahmen,et al.  Compressed Sensing and Electron Microscopy , 2010 .

[78]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[79]  Reinhold Schneider,et al.  Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations , 2015 .

[80]  Lutz Kämmerer,et al.  Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..

[81]  Stephan Dahlke,et al.  An adaptive wavelet method for parameter identification problems in parabolic partial differential equations , 2022 .

[82]  Gabriele Steidl,et al.  Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .

[83]  Reinhold Schneider,et al.  Numerical analysis of Gaussian approximations in quantum chemistry , 2012 .

[84]  Tammo Jan Dijkema,et al.  Adaptive tensor product wavelet methods for solving PDEs , 2009 .

[85]  Karsten Urban,et al.  Adaptive Wavelet Methods on Unbounded Domains , 2012, Journal of Scientific Computing.

[86]  Reinhold Schneider,et al.  Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..

[87]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[88]  Ianwei,et al.  Compressive Video Sampling with Approximate Message Passing Decoding , 2011 .

[89]  Pierre Gilles Lemarié-Rieusset,et al.  Analyse multi-résolution bi-orthogonale sur l’intervalle et applications , 1993 .

[90]  Christian Bender,et al.  Least-Squares Monte Carlo for Backward SDEs , 2012 .

[91]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[92]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[93]  K. Ritter,et al.  Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations , 2022 .

[94]  Jens Kappei Adaptive frame methods for nonlinear elliptic problems , 2011 .

[95]  Wolfgang Dahmen,et al.  Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..

[96]  Souleymane Kadri Harouna,et al.  Effective construction of divergence-free wavelets on the square , 2013, J. Comput. Appl. Math..

[97]  Lutz Kämmerer Reconstructing hyperbolic cross trigonometric polynomials by sampling along generated sets , 2012 .

[98]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[99]  O. Christensen Frames and Bases: An Introductory Course , 2008 .

[100]  Karsten Urban Wavelets in Numerical Simulation - Problem Adapted Construction and Applications , 2002, Lecture Notes in Computational Science and Engineering.

[101]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[102]  Klaus Ritter,et al.  A Local Refinement Strategy for Constructive Quantization of Scalar SDEs , 2013, Found. Comput. Math..

[103]  Markus Hansen,et al.  On tensor products of quasi-Banach spaces , 2010 .

[104]  Karsten Urban,et al.  On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise , 2013 .

[105]  S. H. Lui,et al.  On Schwarz Alternating Methods for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Sci. Comput..

[106]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[107]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[108]  Silvia Bertoluzza,et al.  Adaptive Wavelet Methods , 2011 .

[109]  Karsten Urban,et al.  Wavelet bases in H(div) and H(curl) , 2001, Math. Comput..

[110]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[111]  P. Lemarié-Rieusset Fonctions à support compact dans les analyses multi-résoIutions , 1991 .

[112]  Andreas Zeiser,et al.  Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation , 2012 .

[113]  Karsten Urban Using divergence free wavelets for the numerical solution of the Stokes problem , 1996 .

[114]  Pierre Gilles Lemarié-Rieusset Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .

[115]  Jinchao Xu,et al.  Global and uniform convergence of subspace correction methods for some convex optimization problems , 2002, Math. Comput..

[116]  Denis Belomestny,et al.  Multilevel dual approach for pricing American style derivatives , 2012, Finance Stochastics.

[117]  Tobias Jahnke,et al.  Error Bound for Piecewise Deterministic Processes Modeling Stochastic Reaction Systems , 2012, Multiscale Model. Simul..

[118]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[119]  Klaus Ritter,et al.  Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains , 2010, 1011.1814.

[120]  Miriam Primbs,et al.  New Stable Biorthogonal Spline-Wavelets on the Interval , 2010 .

[121]  Lutz Kämmerer,et al.  On the stability of the hyperbolic cross discrete Fourier transform , 2011, Numerische Mathematik.

[122]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[123]  K. Ritter,et al.  On the convergence analysis of Rothe ’ s method , 2022 .

[124]  Armin Iske,et al.  On Groupoid C∗-Algebras, Persistent Homology and Time-Frequency Analysis , 2011 .

[125]  Erich Novak,et al.  The Curse of Dimensionality for Monotone and Convex Functions of Many Variables , 2010, 1011.3680.

[126]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[127]  Wolfgang Dahmen,et al.  Classification algorithms using adaptive partitioning , 2014, 1411.0839.

[128]  Wang-Q Lim,et al.  Image Separation Using Shearlets , 2011 .

[129]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[130]  Howard C. Elman,et al.  Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..

[131]  Karsten Urban Adaptive Wavelet Methods , 2008 .

[132]  E. Novak,et al.  On the power of function values for the approximation problem in various settings , 2010, 1011.3682.