Adaptive Wavelet Schwarz Methods for the Navier-Stokes Equation
暂无分享,去创建一个
Stephan Dahlke | Rob Stevenson | S. Lui | S. Dahlke | R. Stevenson | Dominik Lellek | Dominik Lellek | Shiu Hong Lui
[1] R. Schilling,et al. Weak Order for the Discretization of the Stochastic Heat Equation Driven by Impulsive Noise , 2009, 0911.4681.
[2] F. Eckhardt. Besov regularity for the Stokes and the Navier‐Stokes system in polyhedral domains , 2015 .
[3] Christian Bender,et al. A Posteriori Estimates for Backward SDEs , 2013, SIAM/ASA J. Uncertain. Quantification.
[4] Hermann G. Matthies,et al. Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .
[5] G. Kutyniok,et al. Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.
[6] Wang-Q Lim,et al. Compactly Supported Shearlets , 2010, 1009.4359.
[7] Rob Stevenson. Divergence-Free Wavelets on the Hypercube: General Boundary Conditions , 2016 .
[8] A. Uschmajew,et al. LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR OPTIMIZATION OF CONVEX PROBLEMS IN THE TT FORMAT , 2011 .
[9] Rob P. Stevenson,et al. A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems , 2009, Math. Comput..
[10] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[11] Armin Iske,et al. Optimal representation of piecewise Hölder smooth bivariate functions by the Easy Path Wavelet Transform , 2013, J. Approx. Theory.
[12] Winfried Sickel,et al. Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .
[13] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[14] Winfried Sickel,et al. Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .
[15] Steffen Dereich,et al. Foundations of Computational Mathematics, Budapest 2011: On the Complexity of Computing Quadrature Formulas for SDEs , 2012 .
[16] Klaus Ritter,et al. Derandomization of the Euler scheme for scalar stochastic differential equations , 2012, J. Complex..
[17] R. Schneider,et al. The Alternating Linear Scheme for Tensor Optimisation in the TT Format , 2022 .
[18] Harry Yserentant,et al. The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces , 2012, Numerische Mathematik.
[19] Hermann G. Matthies,et al. Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..
[20] Tobias Jahnke,et al. On Reduced Models for the Chemical Master Equation , 2011, Multiscale Model. Simul..
[21] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[22] Stephan Dahlke. Besov Regularity for the Stokes Problem , 1999 .
[23] Felix Lindner,et al. Singular behavior of the solution to the stochastic heat equation on a polygonal domain , 2013, Stochastic Partial Differential Equations: Analysis and Computations.
[24] Christian Bender,et al. Error Criteria for Numerical Solutions of Backward SDEs , 2010 .
[25] Wolfgang Dahmen,et al. Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.
[26] W. Hackbusch,et al. On the nonlinear domain decomposition method , 1997 .
[27] G. Kutyniok,et al. Irregular Shearlet Frames: Geometry and Approximation Properties , 2010, 1002.2657.
[28] Henryk Wozniakowski,et al. The curse of dimensionality for numerical integration of smooth functions , 2012, Math. Comput..
[29] Henryk Wozniakowski,et al. Discontinuous information in the worst case and randomized settings , 2011, 1106.2945.
[30] Thorsten Rohwedder,et al. The continuous Coupled Cluster formulation for the electronic Schrödinger equation , 2013 .
[31] Konstantin Grella,et al. Sparse tensor spherical harmonics approximation in radiative transfer , 2011, J. Comput. Phys..
[32] Wolfgang Hackbusch,et al. Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.
[33] Wolfgang Dahmen,et al. Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..
[34] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[35] Harry Yserentant,et al. The mixed regularity of electronic wave functions multiplied by explicit correlation factors , 2011 .
[36] Reinhold Schneider,et al. Error estimates for the Coupled Cluster method , 2013 .
[37] Wolfgang Hackbusch,et al. An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..
[38] R. Temam. Navier-Stokes Equations , 1977 .
[39] Sadegh Jokar,et al. Sparse recovery and Kronecker products , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).
[40] Wang-Q Lim,et al. Shearlets on Bounded Domains , 2010, 1007.3039.
[41] G. Teschke,et al. Inversion of the noisy Radon transform on SO(3) by Gabor frames and sparse recovery principles , 2011 .
[42] Tobias Jahnke,et al. Solving chemical master equations by adaptive wavelet compression , 2010, J. Comput. Phys..
[43] Ole Christensen,et al. Frames and Bases , 2008 .
[44] Reinhold Schneider,et al. An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .
[45] S. Dereich,et al. Constructive quantization: Approximation by empirical measures , 2011, 1108.5346.
[46] Wolfgang Dahmen,et al. Adaptive Petrov-Galerkin methods for first order transport equations , 2011 .
[47] Elisabeth Ullmann,et al. Stochastic Galerkin Matrices , 2010, SIAM J. Matrix Anal. Appl..
[48] G. Teschke,et al. Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .
[49] Wolfgang Dahmen,et al. Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .
[50] Stephan Dahlke,et al. Piecewise tensor product wavelet bases by extensions and approximation rates , 2013, Math. Comput..
[51] Winfried Sickel,et al. On Besov regularity of solutions to nonlinear elliptic partial differential equations , 2020, Nonlinear Analysis.
[52] D. Rudolf,et al. Explicit error bounds for Markov chain Monte Carlo , 2011, 1108.3201.
[53] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[54] Wolfgang Dahmen,et al. Approximation of High-Dimensional Rank One Tensors , 2013, Constructive Approximation.
[55] N. Faustino. A Wavelet-Galerkin Scheme for the Navier-Stokes , 2006 .
[56] Lars Grasedyck,et al. Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .
[57] Gitta Kutyniok,et al. Data Separation by Sparse Representations , 2011, Compressed Sensing.
[58] Stephan Dahlke,et al. Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains , 2012, Int. J. Comput. Math..
[59] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[60] Michael Gnewuch,et al. On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..
[61] Armin Iske,et al. Curvature analysis of frequency modulated manifolds in dimensionality reduction , 2011 .
[62] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[63] Michael Griebel,et al. An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations , 2012, Journal of Scientific Computing.
[64] M. Hansen,et al. n-term approximation rates and Besov regularity for elliptic PDEs on polyhedral domains , 2012 .
[65] Stephan Dahlke,et al. A note on quarkonial systems and multilevel partition of unity methods , 2013 .
[66] Petru A. Cioica,et al. On the $L_q(L_p)$-regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains , 2013, 1301.1180.
[67] H. Yserentant,et al. On the Complexity of the Electronic Schrödinger Equation , 2022 .
[68] Simen Kvaal,et al. Multiconfigurational time-dependent Hartree method to describe particle loss due to absorbing boundary conditions , 2011, 1102.3899.
[69] E. Ullmann,et al. Preconditioning Stochastic Galerkin Saddle Point Problems , 2022 .
[70] Dajana Conte,et al. Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .
[71] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[72] Torsten Görner,et al. Efficient and accurate computation of spherical mean values at scattered center points , 2012 .
[73] Christian Bender,et al. Primal and Dual Pricing of Multiple Exercise Options in Continuous Time , 2011, SIAM J. Financial Math..
[74] D. Crisan,et al. Robust filtering: Correlated noise and multidimensional observation , 2012, 1201.1858.
[75] Dominik Lellek. Adaptive wavelet frame domain decomposition methods for nonlinear elliptic equations , 2013 .
[77] Wolfgang Dahmen,et al. Compressed Sensing and Electron Microscopy , 2010 .
[78] Zi-Cai Li,et al. Schwarz Alternating Method , 1998 .
[79] Reinhold Schneider,et al. Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations , 2015 .
[80] Lutz Kämmerer,et al. Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..
[81] Stephan Dahlke,et al. An adaptive wavelet method for parameter identification problems in parabolic partial differential equations , 2022 .
[82] Gabriele Steidl,et al. Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .
[83] Reinhold Schneider,et al. Numerical analysis of Gaussian approximations in quantum chemistry , 2012 .
[84] Tammo Jan Dijkema,et al. Adaptive tensor product wavelet methods for solving PDEs , 2009 .
[85] Karsten Urban,et al. Adaptive Wavelet Methods on Unbounded Domains , 2012, Journal of Scientific Computing.
[86] Reinhold Schneider,et al. Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..
[87] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[88] Ianwei,et al. Compressive Video Sampling with Approximate Message Passing Decoding , 2011 .
[89] Pierre Gilles Lemarié-Rieusset,et al. Analyse multi-résolution bi-orthogonale sur l’intervalle et applications , 1993 .
[90] Christian Bender,et al. Least-Squares Monte Carlo for Backward SDEs , 2012 .
[91] André Uschmajew,et al. Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..
[92] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[93] K. Ritter,et al. Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations , 2022 .
[94] Jens Kappei. Adaptive frame methods for nonlinear elliptic problems , 2011 .
[95] Wolfgang Dahmen,et al. Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..
[96] Souleymane Kadri Harouna,et al. Effective construction of divergence-free wavelets on the square , 2013, J. Comput. Appl. Math..
[97] Lutz Kämmerer. Reconstructing hyperbolic cross trigonometric polynomials by sampling along generated sets , 2012 .
[98] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[99] O. Christensen. Frames and Bases: An Introductory Course , 2008 .
[100] Karsten Urban. Wavelets in Numerical Simulation - Problem Adapted Construction and Applications , 2002, Lecture Notes in Computational Science and Engineering.
[101] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[102] Klaus Ritter,et al. A Local Refinement Strategy for Constructive Quantization of Scalar SDEs , 2013, Found. Comput. Math..
[103] Markus Hansen,et al. On tensor products of quasi-Banach spaces , 2010 .
[104] Karsten Urban,et al. On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise , 2013 .
[105] S. H. Lui,et al. On Schwarz Alternating Methods for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Sci. Comput..
[106] P. Maass,et al. An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .
[107] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[108] Silvia Bertoluzza,et al. Adaptive Wavelet Methods , 2011 .
[109] Karsten Urban,et al. Wavelet bases in H(div) and H(curl) , 2001, Math. Comput..
[110] W. Dahmen,et al. Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .
[111] P. Lemarié-Rieusset. Fonctions à support compact dans les analyses multi-résoIutions , 1991 .
[112] Andreas Zeiser,et al. Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation , 2012 .
[113] Karsten Urban. Using divergence free wavelets for the numerical solution of the Stokes problem , 1996 .
[114] Pierre Gilles Lemarié-Rieusset. Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .
[115] Jinchao Xu,et al. Global and uniform convergence of subspace correction methods for some convex optimization problems , 2002, Math. Comput..
[116] Denis Belomestny,et al. Multilevel dual approach for pricing American style derivatives , 2012, Finance Stochastics.
[117] Tobias Jahnke,et al. Error Bound for Piecewise Deterministic Processes Modeling Stochastic Reaction Systems , 2012, Multiscale Model. Simul..
[118] Armin Iske,et al. Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..
[119] Klaus Ritter,et al. Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains , 2010, 1011.1814.
[120] Miriam Primbs,et al. New Stable Biorthogonal Spline-Wavelets on the Interval , 2010 .
[121] Lutz Kämmerer,et al. On the stability of the hyperbolic cross discrete Fourier transform , 2011, Numerische Mathematik.
[122] Wolfgang Dahmen,et al. DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.
[123] K. Ritter,et al. On the convergence analysis of Rothe ’ s method , 2022 .
[124] Armin Iske,et al. On Groupoid C∗-Algebras, Persistent Homology and Time-Frequency Analysis , 2011 .
[125] Erich Novak,et al. The Curse of Dimensionality for Monotone and Convex Functions of Many Variables , 2010, 1011.3680.
[126] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[127] Wolfgang Dahmen,et al. Classification algorithms using adaptive partitioning , 2014, 1411.0839.
[128] Wang-Q Lim,et al. Image Separation Using Shearlets , 2011 .
[129] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[130] Howard C. Elman,et al. Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..
[131] Karsten Urban. Adaptive Wavelet Methods , 2008 .
[132] E. Novak,et al. On the power of function values for the approximation problem in various settings , 2010, 1011.3682.