Exact signal recovery from sparsely corrupted measurements through the Pursuit of Justice

Compressive sensing provides a framework for recovering sparse signals of length N from M ≪ N measurements. If the measurements contain noise bounded by ∈, then standard algorithms recover sparse signals with error at most C∈. However, these algorithms perform suboptimally when the measurement noise is also sparse. This can occur in practice due to shot noise, malfunctioning hardware, transmission errors, or narrowband interference. We demonstrate that a simple algorithm, which we dub Justice Pursuit (JP), can achieve exact recovery from measurements corrupted with sparse noise. The algorithm handles unbounded errors, has no input parameters, and is easily implemented via standard recovery techniques.

[1]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[2]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  F. Famoye Continuous Univariate Distributions, Volume 1 , 1994 .

[4]  E.J. Candes Compressive Sampling , 2022 .

[5]  Richard G. Baraniuk,et al.  Democracy in Action: Quantization, Saturation, and Compressive Sensing , 2011 .

[6]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[7]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[8]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[9]  Kenneth E. Barner,et al.  Robust Sampling and Reconstruction Methods for Sparse Signals in the Presence of Impulsive Noise , 2010, IEEE Journal of Selected Topics in Signal Processing.

[10]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[11]  Rebecca Willett,et al.  Compressive coded aperture imaging , 2009, Electronic Imaging.

[12]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[13]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[14]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[15]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[16]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[17]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[18]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[19]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[20]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[21]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[22]  Richard G. Baraniuk,et al.  Random Filters for Compressive Sampling and Reconstruction , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[23]  Richard G. Baraniuk,et al.  Distributed Compressive Sensing , 2009, ArXiv.

[24]  P. Wojtaszczyk,et al.  Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing , 2010, Found. Comput. Math..

[25]  Paul Hasler,et al.  Compressive Sensing on a CMOS Separable-Transform Image Sensor , 2010, Proc. IEEE.