An algebraic approach to stable domains

Day [75] showed that the category of continuous lattices and maps which preserve directed joins and arbitrary meets is the category of algebras for a monad over Set, Sp or Pos, the free functor being the set of lters of open sets. Separately, Berry [78] constructed a cartesian closed category whose morphisms preserve directed joins and connected meets, whilst Diers [79] considered similar functors independently in a study of categories of models of disjunctive theories. Girard [85] built on Berry’s work to build a new and very lean model of polymorphism. In this paper we bring these strands together, dening a monad based on lters of connected open sets and showing that its category of algebras has Berry’s (stable) morphisms and is cartesian closed. The objects have multijoins as in Diers’ work, and the slices are continuous lattices. The monad can only be dened for locally connected spaces, so via [Barr-Par

[1]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[2]  Thierry Coquand Categories of Embeddings , 1988, LICS.

[3]  Glynn Winskel,et al.  DI-Domains as a Model of Polymorphism , 1987, MFPS.

[4]  Samson Abramsky,et al.  Category Theory and Computer Programming , 1986, Lecture Notes in Computer Science.

[5]  Glynn Winskel,et al.  Domain Theoretic Models of Polymorphism , 1989, Inf. Comput..

[6]  D. Scott,et al.  Sheaves and logic , 1979 .

[7]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[8]  C. Lair Diagrammes localement libres extensions de corps et théorie de Galois , 1983 .

[9]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[10]  Jean-Yves Girard,et al.  Π12-logic, Part 1: Dilators , 1981 .

[11]  Yves Diers Some spectra relative to functors , 1981 .

[12]  Peter T. Johnstone A topos-theorist looks at dilators☆ , 1989 .

[13]  J. Girard,et al.  Proofs and types , 1989 .

[14]  Yves Diers Multimonads and multimonadic categories , 1980 .

[15]  Paul Taylor,et al.  Quantitative Domains, Groupoids and Linear Logic , 1989, Category Theory and Computer Science.

[16]  P. T. Johnstone,et al.  A syntactic approach to Diers' localizable categories , 1979 .

[17]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[18]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[19]  David E. Rydeheard,et al.  Foundations of Equational Deduction: A Categorical Treatment of Equational Proofs and Unification Algorithms , 1987, Category Theory and Computer Science.

[20]  Yves Diers Une construction universelle des spectres topologies spectrales et faisceaux structuraux , 1984 .

[21]  Alan Day Filter monads, continuous lattices and closure systems , 1975 .

[22]  Pierre-Louis Curien,et al.  Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..

[23]  Jean-Jacques Lévy,et al.  Minimal and Optimal Computations of Recursive Programs , 1979, J. ACM.

[24]  André Joyal,et al.  Continuous categories and exponentiable toposes , 1982 .

[25]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[26]  J. M. E. Hyland,et al.  Function spaces in the category of locales , 1981 .

[27]  A. Joyal Foncteurs analytiques et espèces de structures , 1986 .

[28]  Jean-Yves Girard,et al.  Normal functors, power series and λ-calculus , 1988, Ann. Pure Appl. Log..

[29]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[30]  José Meseguer,et al.  Order completion monads , 1983 .

[31]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[32]  Achim Jung Cartesian Closed Categories of Algebraic CPOs , 1990, Theor. Comput. Sci..

[33]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[34]  E. Strömgren,et al.  Fifteen years later , 1978 .

[35]  John W. Gray,et al.  Categories in Computer Science and Logic , 1989 .

[36]  Bruno Courcelle,et al.  Program Equivalence and Canonical Forms in Stable Discrete Interpretations , 1976, ICALP.

[37]  Yves Diers Catégories Localement Multiprésentables , 1980 .

[38]  Yves Diers Familles universelles de morphismes , 1978 .