Fuzzy prior information and minimax estimation in the linear regression model

We consider the linear regression modely=Xβ+u with prior information on the unknown parameter vector β. The additional information on β is given by a fuzzy set. Using the mean squared error criterion we derive linear estimators that optimally combine the data with the fuzzy prior information. Our approach generalizes the classical minimax procedure firstly proposed by Kuks and Olman.

[1]  Kurt Hoffmann Characterization of minimax linear estimators in linear regression , 1979 .

[2]  Spectral theory of minimax estimation , 1996 .

[3]  Jürgen Pilz,et al.  Minimax linear regression estimation with symmetric parameter restrictions , 1986 .

[4]  Hans-Jürgen Zimmermann,et al.  Fuzzy set theory , 1992 .

[5]  Minimax-linear and theil estimator for restrained regression coefficients , 1978 .

[6]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[7]  Linear and ellipsoidal restrictions in linear regression , 1991 .

[8]  Peter Stahlecker,et al.  A priori Information und Minimax-Schätzung im linearen Regressionsmodell , 1987 .

[9]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[10]  Linear Bayes and minimax estimation in linear models with partially restricted parameter space , 1993 .

[11]  H. Läuter,et al.  A minimax linear estimator for linear parameters under restrictions in form of inequalities , 1975 .

[12]  Jürgen Pilz,et al.  Bayesian estimation and experimental design in linear regression models , 1992 .

[13]  Linear minimax estimation with ellipsoidal constraints , 1996 .

[14]  A numerical method for an approximate minimax estimator in linear regression , 1992 .

[15]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[16]  N. Gaffke,et al.  Bayes, Admissible, and Minimax Linear Estimators in Linear Models with Restricted Parameter Space , 1989 .

[17]  On the equivalence of spectral theory and bayesian analysis in minimax linear estimation , 1996 .

[18]  Götz Trenkler,et al.  Quasi minimax estimation in the linear regression model , 1987 .

[19]  M. Schervish,et al.  Prior information in linear models , 1983 .