The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament

We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar–Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in OMC 1 of mG, where mG represents a predominantly systematic uncertainty. We develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic energy density of J m−3 in OMC 1, comparable both to the gravitational potential energy density of OMC 1 (∼10−7 J m−3) and to the energy density in the Orion BN/KL outflow (∼10−7 J m−3). We find that neither the Alfvén velocity in OMC 1 nor the velocity of the super-Alfvénic outflow ejecta is sufficiently large for the BN/KL outflow to have caused large-scale distortion of the local magnetic field in the ∼500 yr lifetime of the outflow. Hence, we propose that the hourglass field morphology in OMC 1 is caused by the distortion of a primordial cylindrically symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational interaction of the BN/KL and S clumps. We find that OMC 1 is currently in or near magnetically supported equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the magnetic field in OMC 1, and not vice versa.

[1]  J. Francesco,et al.  Dust emissivity in the star-forming filament OMC 2/3 (Corrigendum) , 2016, Astronomy & Astrophysics.

[2]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[3]  H. Liu,et al.  Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament , 2017, 1703.02566.

[4]  A. Ginsburg,et al.  The ALMA View of the OMC1 Explosion in Orion , 2017, 1701.01906.

[5]  L. Hartmann,et al.  THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS , 2016, The Astrophysical Journal.

[6]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[7]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: a first look at Southern Orion A with SCUBA-2 , 2016, 1606.08854.

[8]  Zhi-Yun Li,et al.  INTERFEROMETRIC MAPPING OF MAGNETIC FIELDS: THE ALMA VIEW OF THE MASSIVE STAR-FORMING CLUMP W43-MM1 , 2016, 1605.08037.

[9]  T. Pillai,et al.  CN Zeeman and dust polarization in a high-mass cold clump , 2016, 1604.07433.

[10]  A. Ginsburg,et al.  THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW , 2016, 1604.04651.

[11]  Jungyeon Cho,et al.  A TECHNIQUE FOR CONSTRAINING THE DRIVING SCALE OF TURBULENCE AND A MODIFIED CHANDRASEKHAR–FERMI METHOD , 2016, 1603.08537.

[12]  D. Johnstone,et al.  The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A , 2016, 1601.01989.

[13]  D. Johnstone,et al.  The JCMT Gould Belt Survey : properties of star-forming filaments in Orion A North , 2015 .

[14]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: constraints on prestellar core properties in Orion A North , 2015 .

[15]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population , 2015, 1502.05858.

[16]  Devin W. Silvia,et al.  The Orion Fingers: Near-IR Adaptive Optics Imaging of an Explosive Protostellar Outflow , 2015, 1502.04711.

[17]  S. Plaszczynski,et al.  Polarization measurement analysis - I. Impact of the full covariance matrix on polarization fraction and angle measurements , 2014, 1406.6536.

[18]  P. Koch,et al.  THE IMPORTANCE OF THE MAGNETIC FIELD FROM AN SMA–CSO-COMBINED SAMPLE OF STAR-FORMING REGIONS , 2014, 1411.3830.

[19]  K. Menten,et al.  MAGNETIC FIELDS IN HIGH-MASS INFRARED DARK CLOUDS , 2014, 1410.7390.

[20]  K. Menten,et al.  SUBMILLIMETER ARRAY OBSERVATIONS OF MAGNETIC FIELDS IN G240.31+0.07: AN HOURGLASS IN A MASSIVE CLUSTER-FORMING CORE , 2014, 1409.5608.

[21]  L. Montier,et al.  Polarization measurements analysis II. Best estimators of polarization fraction and angle , 2014, 1407.0178.

[22]  Joshua O. Gundersen,et al.  LUPUS I OBSERVATIONS FROM THE 2010 FLIGHT OF THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE FOR POLARIMETRY , 2013, 1307.5853.

[23]  N. Peretto,et al.  Reconstructing the density and temperature structure of prestellar cores from Herschel data: A case study for B68 and L1689B , 2013, 1311.5086.

[24]  K. Menten,et al.  FROM POLOIDAL TO TOROIDAL: DETECTION OF A WELL-ORDERED MAGNETIC FIELD IN THE HIGH-MASS PROTOCLUSTER G35.2−0.74 N , 2013, 1311.0566.

[25]  P. Koch,et al.  DR 21(OH): A HIGHLY FRAGMENTED, MAGNETIZED, TURBULENT DENSE CORE , 2013, 1305.6509.

[26]  C. Hull,et al.  THE MAGNETIC FIELD MORPHOLOGY OF THE CLASS 0 PROTOSTAR L1157-mm , 2013, 1304.6739.

[27]  Canadian Institute for Theoretical Astrophysics,et al.  First results from the Herschel Gould Belt Survey in Taurus , 2013, 1304.4098.

[28]  A. Duarte-Cabral,et al.  THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2 , 2013, 1303.1529.

[29]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[30]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[31]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[32]  N. Peretto,et al.  Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? , 2012, 1211.6360.

[33]  D. Ward-Thompson,et al.  The JCMT Legacy Survey of the Gould Belt: mapping 13CO and C18O in Orion A , 2012, 1201.5483.

[34]  K. Sandstrom,et al.  Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes , 2011, 1106.5065.

[35]  M. Tamura,et al.  NEAR-INFRARED-IMAGING POLARIMETRY TOWARD SERPENS SOUTH: REVEALING THE IMPORTANCE OF THE MAGNETIC FIELD , 2011, 1104.2977.

[36]  B. Wandelt,et al.  MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS , 2010 .

[37]  Astrophysics,et al.  HIGH-ANGULAR RESOLUTION DUST POLARIZATION MEASUREMENTS: SHAPED B-FIELD LINES IN THE MASSIVE STAR-FORMING REGION ORION BN/KL , 2010, 1006.2957.

[38]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[39]  D. Ward-Thompson,et al.  The JCMT Legacy Survey of the Gould Belt: a first look at Orion B with HARP , 2009, 0908.4162.

[40]  J. Foster,et al.  THE DUST EMISSIVITY SPECTRAL INDEX IN THE STARLESS CORE TMC-1C , 2009, 0911.0892.

[41]  H. Shinnaga,et al.  HIGH-VELOCITY MOLECULAR OUTFLOW IN CO J = 7–6 EMISSION FROM THE ORION HOT CORE , 2009, 0908.0317.

[42]  K. Menten,et al.  EXPLOSIVE DISINTEGRATION OF A MASSIVE YOUNG STELLAR SYSTEM IN ORION , 2009, 0907.3945.

[43]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[44]  Qizhou Zhang,et al.  Magnetic Fields in the Formation of Massive Stars , 2009, Science.

[45]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[46]  J. Bally Overview of the Orion Complex , 2008, 0812.0046.

[47]  Jessie L. Dotson,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. , 2008, 0909.5227.

[48]  A. Chrysostomou,et al.  Magnetic fields in massive star-forming regions , 2007, 0709.0256.

[49]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[50]  J. Meaburn,et al.  Hydroxyl maser disc and outflow in the Orion-BN/KL region , 2006, astro-ph/0601604.

[51]  L. Loinard,et al.  Dynamical Decay of a Massive Multiple System in Orion KL? , 2005, astro-ph/0509201.

[52]  J. Bally,et al.  The Birth of High-Mass Stars: Accretion and/or Mergers? , 2005, astro-ph/0502485.

[53]  K. Rice,et al.  Protostars and Planets V , 2005 .

[54]  P. Bastien,et al.  Tracing the Magnetic Field in Orion A , 2003, astro-ph/0312365.

[55]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[56]  D. Balsara,et al.  A turbulent MHD model for molecular clouds and a new method of accretion on to star‐forming cores , 2001, astro-ph/0105327.

[57]  M. Norman,et al.  Magnetic Field Diagnostics Based on Far-Infrared Polarimetry: Tests Using Numerical Simulations , 2001, astro-ph/0103286.

[58]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[59]  R. Crutcher,et al.  OH Zeeman Measurement of the Magnetic Field in the L1544 Core , 2000 .

[60]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[61]  Richard M. Crutcher,et al.  Detection of the CN Zeeman Effect in Molecular Clouds , 1999 .

[62]  P. Padoan,et al.  A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.

[63]  J. Fiege,et al.  Helical fields and filamentary molecular clouds — I , 1999, astro-ph/9901096.

[64]  M. Wright,et al.  High-Resolution Millimeter-Wave Mapping of Linearly Polarized Dust Emission: Magnetic Field Structure in Orion , 1998, astro-ph/9805288.

[65]  J. Bally,et al.  JCMT/SCUBA Submillimeter Wavelength Imaging of the Integral-shaped Filament in Orion , 1998 .

[66]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[67]  D. A. Schleuning,et al.  Far-infrared and Submillimeter Polarization of OMC-1: Evidence for Magnetically Regulated Star Formation , 1997 .

[68]  B. Lazareff,et al.  CN zeeman observations of molecular cloud cores , 1996 .

[69]  R. Crutcher Magnetic fields in molecular clouds , 2007 .

[70]  M. Burton,et al.  Explosive ejection of matter associated with star formation in the Orion nebula , 1993, Nature.

[71]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[72]  K. Johnston,et al.  The spatial distribution of the OH masers in Orion-KL , 1989 .

[73]  W. Baan,et al.  The Detection of the 4 -1--3 0 E Transition of Methanol at 36.2 GHz toward Hot H II Regions , 1989 .

[74]  R. Wilson,et al.  Filamentary structure in the Orion molecular cloud , 1986 .

[75]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[76]  Ray P. Norris,et al.  MERLIN observations of OH maser outflows in Orion–KL , 1984 .

[77]  K. Johnston,et al.  VLA observations of the /sup 2/. pi. /sub 3/2/ J = 3/2 OH masers associated with Orion A , 1983 .

[78]  N. Scoville,et al.  The nature of the broad molecular line emission at the Kleinmann-Low nebula. , 1976 .

[79]  R. Wilson,et al.  Interstellar hydrogen sulfide. , 1972 .

[80]  Frank J. Low,et al.  Discovery of an infrared nebula in Orion. , 1967 .

[81]  G. Neugebauer,et al.  Observations of an infrared star in the Orion nebula. , 1967 .

[82]  J. Ostriker The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .

[83]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[84]  S. Chandrasekhar,et al.  The fluctuations of density in isotropic turbulence , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[85]  S. Chandrasekhar The gravitational instability of an infinite homogeneous turbulent medium , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[86]  Luis C. Guerin Resultados del Observatorio Nacional Argentino , 1934 .

[87]  J. Herschel Results of astronomical observations made during the years 1834, 5, 6, 7, 8, at the Cape of Good Hope : being the completion of a telescopic survey of the whole surface of the visible heavens, commenced in 1825 , 1847 .