On Optimal Parameters for Ant Colony Optimization Algorithms

Ant Colony Optimization (ACO) is a metaheuristic introduced by Dorigo et al. [9] which uses ideas from nature to find solutions to instances of the Travelling Salesman Problem (TSP) and other combinatorial optimisation problems. In this paper we analyse the parameter settings of the ACO algorithm. These determine the behaviour of each ant and are critical for fast convergence to near optimal solutions of a given problem instance. We classify TSP instances using three measures of complexity and uniformity. We describe experimental work that attempts to correlate ‘types’ of TSP problems with parameter settings for fast convergence. We found these optimal parameter settings to be highly problemspecific and dependent on the required accuracy of the solution. This inspired us to explore techniques for automatically learning the optimal parameters for a given TSP instance. We devised and implemented a hybrid ACO algorithm, similar to the one independently developed in [16], which uses a genetic algorithm in the early stages to ‘breed’ a population of ants possessing near optimal behavioural parameter settings for a given problem. This hybrid algorithm converges rapidly for a wide range of problems when given a population of ants with diverse behavioural parameter settings.

[1]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[2]  Tony White,et al.  Using Genetic Algorithms to Optimize ACS-TSP , 2002, Ant Algorithms.

[3]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[4]  Thomas Stützle,et al.  Improvements on the Ant-System: Introducing the MAX-MIN Ant System , 1997, ICANNGA.

[5]  Keith L. Clark,et al.  April - Agent PRocess Interaction Language , 1995, ECAI Workshop on Agent Theories, Architectures, and Languages.

[6]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Adnan Acan,et al.  GAACO: A GA + ACO Hybrid for Faster and Better Search Capability , 2002, Ant Algorithms.

[8]  Marcus Randall Near Parameter Free Ant Colony Optimisation , 2004, ANTS Workshop.

[9]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[10]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[11]  Corso Elvezia Ant Colonies for the QAP , 1997 .

[12]  Gilbert Laporte,et al.  Heuristics for the black and white traveling salesman problem , 2003, Comput. Oper. Res..

[13]  Krzysztof Socha,et al.  ACO for Continuous and Mixed-Variable Optimization , 2004, ANTS Workshop.

[14]  Vittorio Maniezzo,et al.  The Ant System Applied to the Quadratic Assignment Problem , 1999, IEEE Trans. Knowl. Data Eng..

[15]  Dorian Gaertner,et al.  Natural Algorithms for Optimisation Problems Final Year Project Report , 2004 .

[16]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[17]  Martin Middendorf,et al.  A Population Based Approach for ACO , 2002, EvoWorkshops.

[18]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).