Spectral Capacitance of Series and Parallel Combinations of Supercapacitors

The porous nature of the electrode material in supercapacitors and the apparent conductivity of their electrolyte cause their impedance to show a complex frequency-dependent behavior, which in turn makes it incorrect to treat them as ideal capacitors even at a few millihertz frequency. This is particularly crucial if the intended application requires a configuration using stacked supercapacitor banks, where errors in defining the metrics of the individual components accumulate. While manufacturers provide supercapacitor ratings at DC only, we show using a detailed impedance spectroscopy study of all possible series and parallel combinations of two different commercial 1 Farad carbon-carbon supercapacitors, that these nominal DC capacitances are not suitable to evaluate the equivalent capacitance. Instead, using a model consisting of a series resistance and a constant phase element, we employ a real effective capacitance (in proper Farad units) suitable for direct application. This effective capacitance can be used to define a frequency-dependent quality factor of a supercapacitor, and enables the easy calculation of series and parallel associations of identical or different devices.

[1]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[2]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[3]  Impedance of porous electrodes , 1995 .

[4]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[5]  Robert A. Huggins,et al.  Supercapacitors and electrochemical pulse sources , 2000 .

[6]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[7]  C. Hsu,et al.  Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance , 2001 .

[8]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[9]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[10]  P. Kurzweil,et al.  A new monitoring method for electrochemical aggregates by impedance spectroscopy , 2004 .

[11]  A. B. Fuertes,et al.  Graphitic mesoporous carbons synthesised through mesostructured silica templates , 2004 .

[12]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[13]  J. Jorcin,et al.  CPE analysis by local electrochemical impedance spectroscopy , 2006 .

[14]  Vincent Vivier,et al.  The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions , 2007 .

[15]  J. J. Quintana,et al.  Modeling of Electrochemical Double Layer Capacitors by Means of Fractional Impedance , 2007 .

[16]  M. Itagaki,et al.  Impedance analysis on electric double layer capacitor with transmission line model , 2007 .

[17]  Vincent Vivier,et al.  The Apparent Constant-Phase-Element Behavior of an Ideally Polarized Blocking Electrode A Global and Local Impedance Analysis , 2007 .

[18]  V. Jovanović,et al.  Electrochemical and capacitive properties of thin-layer carbon black electrodes , 2008 .

[19]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[20]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[21]  Hidetaka Konno,et al.  Carbon materials for electrochemical capacitors , 2010 .

[22]  Vincent Vivier,et al.  Determination of effective capacitance and film thickness from constant-phase-element parameters , 2010 .

[23]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[24]  Dongsheng Ma,et al.  Energy Storage and Management System With Carbon Nanotube Supercapacitor and Multidirectional Power Delivery Capability for Autonomous Wireless Sensor Nodes , 2010, IEEE Transactions on Power Electronics.

[25]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[26]  B. Goswami,et al.  Fabrication of a Fractional Order Capacitor With Desired Specifications: A Study on Process Identification and Characterization , 2011, IEEE Transactions on Electron Devices.

[27]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[28]  Roberto Kawakami Harrop Galvão,et al.  Fractional Order Modeling of Large Three-Dimensional RC Networks , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Ahmed Gomaa Radwan,et al.  Optimization of Fractional-Order RLC Filters , 2013, Circuits Syst. Signal Process..

[30]  S. Fletcher,et al.  A universal equivalent circuit for carbon-based supercapacitors , 2014, Journal of Solid State Electrochemistry.

[31]  Khaled N. Salama,et al.  Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites , 2013 .

[32]  Ahmed S. Elwakil,et al.  Measurement of Supercapacitor Fractional-Order Model Parameters From Voltage-Excited Step Response , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[33]  Tsungwu Lin,et al.  High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes , 2014, Scientific Reports.

[34]  N. Hu,et al.  Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors , 2014, Scientific Reports.

[35]  Q. Wang,et al.  Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities , 2014 .

[36]  Guozhen Shen,et al.  Three‐Dimensional Structural Engineering for Energy‐Storage Devices: From Microscope to Macroscope , 2014 .

[37]  Yuanyuan Shang,et al.  Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode. , 2014, ACS applied materials & interfaces.

[38]  Xiaojuan Hou,et al.  Core–Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High‐Performance Materials for Flexible, All‐Solid‐State, Electrochemical Capacitors , 2014 .

[39]  Rudolf Holze,et al.  Supercapacitors Based on Flexible Substrates: An Overview , 2014 .

[40]  Xin-bo Zhang,et al.  Electrostatic Induced Stretch Growth of Homogeneous β-Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors , 2014, Scientific Reports.

[41]  A. Lewandowski,et al.  Limiting ac frequency and dc current of electrochemical double layer capacitors , 2015 .

[42]  Ahmed S. Elwakil,et al.  Emulation of a constant phase element using operational transconductance amplifiers , 2015 .

[43]  Anis Allagui,et al.  One‐pot synthesis of composite NiO/graphitic carbon flakes with contact glow discharge electrolysis for electrochemical supercapacitors , 2015 .

[44]  Carl F. Lorenzo,et al.  Energy storage and loss in fractional-order circuit elements , 2015, IET Circuits Devices Syst..

[45]  P. Kurzweil,et al.  Voltage‐Dependent Capacitance, Aging Effects, and Failure Indicators of Double‐Layer Capacitors during Lifetime Testing , 2015 .

[46]  A. Elwakil,et al.  Power and energy analysis of fractional-order electrical energy storage devices , 2016 .

[47]  Yoshito Andou,et al.  Flexible Graphene-Based Supercapacitors: A Review , 2016 .