Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms

Let F be a finite set of graphs. In the F-DELETION problem, we are given an n-vertex graph G and an integer k as input, and asked whether at most k vertices can be deleted from G such that the resulting graph does not contain a graph from F as a minor. F-DELETION is a generic problem and by selecting different sets of forbidden minors F, one can obtain various fundamental problems such as VERTEX COVER, FEEDBACK VERTEX SET or TREEWIDTH η-DELETION. In this paper we obtain a number of generic algorithmic results about F-DELETION, when F contains at least one planar graph. The highlights of our work are · A constant factor approximation algorithm for the optimization version of F-DELETION; · A linear time and single exponential parameterized algorithm, that is, an algorithm running in time O(2O(k)n), for the parameterized version of F-DELETION where all graphs in F are connected; · A polynomial kernel for parameterized F-DELETION. These algorithms unify, generalize, and improve a multitude of results in the literature. Our main results have several direct applications, but also the methods we develop on the way have applicability beyond the scope of this paper. Our results - constant factor approximation, polynomial kernelization and FPT algorithms - are stringed together by a common theme of polynomial time preprocessing.

[1]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[2]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[3]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[4]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[5]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[6]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[7]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[8]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[9]  Michael R. Fellows,et al.  Forbidden minors to graphs with small feedback sets , 2001, Discret. Math..

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Carsten Lund,et al.  The Approximation of Maximum Subgraph Problems , 1993, ICALP.

[12]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[13]  Aravind Srinivasan,et al.  Splitters and near-optimal derandomization , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[14]  Geevarghese Philip,et al.  A Quartic Kernel for Pathwidth-One Vertex Deletion , 2010, WG.

[15]  B. Mohar,et al.  Graph Minors , 2009 .

[16]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[17]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[18]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..

[19]  B. D. Fluiter Algorithms for graphs of small treewidth , 1997 .

[20]  Michael R. Fellows,et al.  On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.

[21]  Michael R. Fellows,et al.  Crown Structures for Vertex Cover Kernelization , 2007, Theory of Computing Systems.

[22]  H. L. Bodlaender,et al.  Treewidth: Algorithmic results and techniques , 1997 .

[23]  R. Bodendiek,et al.  Solution to König's Graph Embedding Problem , 1989 .

[24]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[25]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[26]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[27]  Reuven Bar-Yehuda,et al.  Randomized Algorithms for the Loop Cutset Problem , 2000, J. Artif. Intell. Res..

[28]  Hanafi S-Tp I &. .In Search , 2013 .

[29]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[30]  Fedor V. Fomin,et al.  Bidimensionality and EPTAS , 2010, SODA '11.

[31]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.

[32]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[33]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[34]  Michael R. Fellows,et al.  The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.

[35]  Michael R. Fellows,et al.  Greedy Localization, Iterative Compression, Modeled Crown Reductions: New FPT Techniques, an Improved Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex Cover , 2004, IWPEC.

[36]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[37]  Geevarghese Philip,et al.  A single-exponential FPT algorithm for the K4-minor cover problem , 2012, J. Comput. Syst. Sci..

[38]  Samuel Fiorini,et al.  Hitting Diamonds and Growing Cacti , 2009, IPCO.

[39]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[40]  Hristo Djidjev,et al.  An efficient algorithm for the genus problem with explicit construction of forbidden subgraphs , 1991, STOC '91.

[41]  Alexander Langer,et al.  Linear Kernels on Graphs Excluding Topological Minors , 2012, ArXiv.

[42]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[43]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[44]  Michal Pilipczuk,et al.  An Improved FPT Algorithm and a Quadratic Kernel for Pathwidth One Vertex Deletion , 2010, Algorithmica.

[45]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[46]  Mihalis Yannakakis,et al.  The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.

[47]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[48]  Stephan Kreutzer,et al.  Computing excluded minors , 2008, SODA '08.

[49]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[50]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[51]  Michael R. Fellows,et al.  On search, decision, and the efficiency of polynomial-time algorithms , 1994, FOCS 1994.

[52]  Reuven Bar-Yehuda,et al.  A Linear-Time Approximation Algorithm for the Weighted Vertex Cover Problem , 1981, J. Algorithms.

[53]  Leslie E. Trotter,et al.  Properties of vertex packing and independence system polyhedra , 1974, Math. Program..

[54]  Jens Lagergren,et al.  Upper Bounds on the Size of Obstructions and Intertwines , 1998, J. Comb. Theory, Ser. B.

[55]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[56]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[57]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[58]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[59]  M. Dinneen,et al.  Minor-order obstructions for the graphs of vertex cover 6 , 2002 .

[60]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..

[61]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[62]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[63]  Sven Koenig,et al.  Greedy localization , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[64]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[65]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[66]  Fedor V. Fomin,et al.  Bidimensionality and geometric graphs , 2011, SODA.

[67]  Saket Saurabh,et al.  Hitting and Harvesting Pumpkins , 2014, SIAM J. Discret. Math..

[68]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[69]  Mihalis Yannakakis,et al.  Some Open Problems in Approximation , 1994, CIAC.

[70]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[71]  Craig A. Tovey,et al.  Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families , 1992, Algorithmica.

[72]  Michael R. Fellows,et al.  An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations , 1989, 30th Annual Symposium on Foundations of Computer Science.

[73]  Russell Impagliazzo,et al.  Computing planar intertwines , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[74]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2009, SODA '10.

[75]  Hans L. Bodlaender,et al.  Reduction Algorithms for Constructing Solutions in Graphs with Small Treewidth , 1996, COCOON.