An affine covariant composite step method for optimization with PDEs as equality constraints
暂无分享,去创建一个
[1] Martin Weiser,et al. An Optimal Control Problem in Polyconvex Hyperelasticity , 2014, SIAM J. Control. Optim..
[2] M. Arioli,et al. A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.
[3] Stefan Ulbrich,et al. Generalized Multilevel SQP-methods for PDAE-constrained Optimization Based on Space-Time Adaptive PDAE Solvers , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[4] Nicholas I. M. Gould,et al. On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..
[5] A. Wathen,et al. Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .
[6] Nicholas I. M. Gould,et al. Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results , 2011, Math. Program..
[7] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[8] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[9] Luís N. Vicente,et al. Analysis of Inexact Trust-Region SQP Algorithms , 2002, SIAM J. Optim..
[10] Martin H. Gutknecht,et al. The Chebyshev iteration revisited , 2002, Parallel Comput..
[11] D. Gleich. TRUST REGION METHODS , 2017 .
[12] Daniel P. Robinson,et al. An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization , 2014, SIAM J. Optim..
[13] Hans-Christian Hege,et al. amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.
[14] P. Ciarlet,et al. Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .
[15] Matthias Heinkenschloss,et al. A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization , 2014, SIAM J. Optim..
[16] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[17] Nicholas I. M. Gould,et al. Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity , 2011, Math. Program..
[18] Denis Ridzal,et al. Trust Region SQP Methods With Inexact Linear System Solves For Large-Scale Optimization , 2006 .
[19] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[20] R. Varga,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[21] O. Schenk,et al. ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .
[22] Stefan Ulbrich,et al. An inexact ℓ1 penalty SQP algorithm for PDE-constrained optimization with an application to shape optimization in linear elasticity , 2013, Optim. Methods Softw..
[23] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[24] Sven Leyffer,et al. Nonlinear programming without a penalty function , 2002, Math. Program..
[25] Ekkehard W. Sachs,et al. Global Convergence of Inexact Reduced SQP Methods , 1995, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[26] Peter Deuflhard,et al. Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia 1 , 2011 .
[27] Stefan Volkwein,et al. Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods , 2002, SIAM J. Control. Optim..
[28] Jorge Nocedal,et al. A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..
[29] Jorge Nocedal,et al. An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..
[30] A. Ioffe,et al. Theory of extremal problems , 1979 .
[31] Peter Deuflhard,et al. Affine conjugate adaptive Newton methods for nonlinear elastomechanics , 2007, Optim. Methods Softw..
[32] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .
[33] E. Omojokun. Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .
[34] Lars Lubkoll. An Optimal Control Approach to Implant Shape Design : Modeling, Analysis and Numerics , 2015 .
[35] Stefan Wendl,et al. Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.
[36] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[37] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[38] Fredi Tröltzsch,et al. First- and Second-Order Optimality Conditions for a Class of Optimal Control Problems with Quasilinear Elliptic Equations , 2009, SIAM J. Control. Optim..
[39] A. Schiela. A Flexible Framework for Cubic Regularization Algorithms for Nonconvex Optimization in Function Space , 2019, Numerical Functional Analysis and Optimization.
[40] A. Vardi. A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .
[41] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[42] Sebastian Götschel,et al. Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox , 2012 .
[43] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[44] Joachim Schöberl,et al. Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..
[45] Jorge Nocedal,et al. An inexact Newton method for nonconvex equality constrained optimization , 2009, Math. Program..
[46] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[47] Stefan Ulbrich,et al. Adaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization , 2011, SIAM J. Optim..