An affine covariant composite step method for optimization with PDEs as equality constraints

We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. Numerical results are shown for optimal control problems subject to a nonlinear heat equation.

[1]  Martin Weiser,et al.  An Optimal Control Problem in Polyconvex Hyperelasticity , 2014, SIAM J. Control. Optim..

[2]  M. Arioli,et al.  A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.

[3]  Stefan Ulbrich,et al.  Generalized Multilevel SQP-methods for PDAE-constrained Optimization Based on Space-Time Adaptive PDAE Solvers , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[4]  Nicholas I. M. Gould,et al.  On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..

[5]  A. Wathen,et al.  Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .

[6]  Nicholas I. M. Gould,et al.  Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results , 2011, Math. Program..

[7]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[8]  Z. Strakos,et al.  Error Estimation in Preconditioned Conjugate Gradients , 2005 .

[9]  Luís N. Vicente,et al.  Analysis of Inexact Trust-Region SQP Algorithms , 2002, SIAM J. Optim..

[10]  Martin H. Gutknecht,et al.  The Chebyshev iteration revisited , 2002, Parallel Comput..

[11]  D. Gleich TRUST REGION METHODS , 2017 .

[12]  Daniel P. Robinson,et al.  An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization , 2014, SIAM J. Optim..

[13]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[14]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[15]  Matthias Heinkenschloss,et al.  A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization , 2014, SIAM J. Optim..

[16]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[17]  Nicholas I. M. Gould,et al.  Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity , 2011, Math. Program..

[18]  Denis Ridzal,et al.  Trust Region SQP Methods With Inexact Linear System Solves For Large-Scale Optimization , 2006 .

[19]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[20]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[21]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[22]  Stefan Ulbrich,et al.  An inexact ℓ1 penalty SQP algorithm for PDE-constrained optimization with an application to shape optimization in linear elasticity , 2013, Optim. Methods Softw..

[23]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[24]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[25]  Ekkehard W. Sachs,et al.  Global Convergence of Inexact Reduced SQP Methods , 1995, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[26]  Peter Deuflhard,et al.  Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia 1 , 2011 .

[27]  Stefan Volkwein,et al.  Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods , 2002, SIAM J. Control. Optim..

[28]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[29]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[30]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[31]  Peter Deuflhard,et al.  Affine conjugate adaptive Newton methods for nonlinear elastomechanics , 2007, Optim. Methods Softw..

[32]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[33]  E. Omojokun Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .

[34]  Lars Lubkoll An Optimal Control Approach to Implant Shape Design : Modeling, Analysis and Numerics , 2015 .

[35]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[36]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[37]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[38]  Fredi Tröltzsch,et al.  First- and Second-Order Optimality Conditions for a Class of Optimal Control Problems with Quasilinear Elliptic Equations , 2009, SIAM J. Control. Optim..

[39]  A. Schiela A Flexible Framework for Cubic Regularization Algorithms for Nonconvex Optimization in Function Space , 2019, Numerical Functional Analysis and Optimization.

[40]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[41]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[42]  Sebastian Götschel,et al.  Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox , 2012 .

[43]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[44]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[45]  Jorge Nocedal,et al.  An inexact Newton method for nonconvex equality constrained optimization , 2009, Math. Program..

[46]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[47]  Stefan Ulbrich,et al.  Adaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization , 2011, SIAM J. Optim..