Detectable close-in planets around white dwarfs through late unpacking

Although 25%-50% of white dwarfs (WDs) display evidence for remnant planetary systems, their orbital architectures and overall sizes remain unknown. Vibrant close-in (~1 Solar radius) circumstellar activity is detected at WDs spanning many Gyrs in age, suggestive of planets further away. Here we demonstrate how systems with 4 and 10 closely-packed planets that remain stable and ordered on the main sequence can become unpacked when the star evolves into a WD and experience pervasive inward planetary incursions throughout WD cooling. Our full-lifetime simulations run for the age of the Universe and adopt main sequence stellar masses of 1.5, 2.0 and 2.5 Solar masses, which correspond to the mass range occupied by the progenitors of typical present-day WDs. These results provide (i) a natural way to generate an ever-changing dynamical architecture in post-main-sequence planetary systems, (ii) an avenue for planets to achieve temporary close-in orbits that are potentially detectable by transit photometry, and (iii) a dynamical explanation for how residual asteroids might pollute particularly old WDs.

[1]  P. Armitage,et al.  Predictions for the correlation between giant and terrestrial extrasolar planets in dynamically evolved systems , 2006, astro-ph/0604077.

[2]  S. Raymond,et al.  The Successful Prediction of the Extrasolar Planet HD 74156d , 2008, 0804.4496.

[3]  J. Bochanski,et al.  DISCOVERY OF A CANDIDATE FOR THE COOLEST KNOWN BROWN DWARF , 2011, 1102.5411.

[4]  Siegfried Eggl,et al.  The stability of ultra-compact planetary systems , 2010 .

[5]  B. Gaensicke,et al.  Hydrogen delivery onto white dwarfs from remnant exo-Oort cloud comets , 2014, 1409.7691.

[6]  N. Kaib,et al.  Planetary system disruption by Galactic perturbations to wide binary stars , 2013, Nature.

[7]  B. Hansen,et al.  Secular Effects of Tidal Damping in Compact Planetary Systems , 2014, 1405.2342.

[8]  R. Rafikov,et al.  INNER EDGES OF COMPACT DEBRIS DISKS AROUND METAL-RICH WHITE DWARFS , 2012, 1207.7082.

[9]  R. Napiwotzki,et al.  The magnetic and metallic degenerate G77-50 , 2011, 1101.2203.

[10]  S. O. Kepler,et al.  Limits on Planets around Pulsating White Dwarf Stars , 2008 .

[11]  Ben Zuckerman,et al.  Metal Lines in DA White Dwarfs , 2003 .

[12]  Kento Masuda,et al.  VERY LOW DENSITY PLANETS AROUND KEPLER-51 REVEALED WITH TRANSIT TIMING VARIATIONS AND AN ANOMALY SIMILAR TO A PLANET–PLANET ECLIPSE EVENT , 2014, 1401.2885.

[13]  R. Michael Rich,et al.  The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End , 2007, 0706.3894.

[14]  J. Margot,et al.  ARE PLANETARY SYSTEMS FILLED TO CAPACITY? A STUDY BASED ON KEPLER RESULTS , 2013, 1302.7190.

[15]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[16]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[17]  E. Villaver,et al.  Long-term evolution of three-planet systems to the post-main sequence and beyond , 2013, 1310.3168.

[18]  C. Stark,et al.  THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS , 2012, 1201.0756.

[19]  I. Ribas,et al.  The initial–final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution , 2008, 0804.3034.

[20]  T. Marsh,et al.  A Gaseous Metal Disk Around a White Dwarf , 2006, Science.

[21]  Dimitri Veras,et al.  Formation of planetary debris discs around white dwarfs – I. Tidal disruption of an extremely eccentric asteroid , 2014, 1409.2493.

[22]  J. Southworth,et al.  SDSS J104341.53+085558.2: a second white dwarf with a gaseous debris disc , 2007, 0705.0447.

[23]  F. Marzari,et al.  Dynamical behaviour of multiplanet systems close to their stability limit , 2014, 1405.1667.

[24]  C. Bergfors,et al.  Signs of a faint disc population at polluted white dwarfs , 2014, 1408.0229.

[25]  J. Laskar,et al.  Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.

[26]  M. Burleigh,et al.  White dwarfs in the UKIRT Infrared Deep Sky Survey Large Area Survey: the substellar companion fraction , 2011, 1106.5893.

[27]  Howard Isaacson,et al.  ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES , 2013, 1303.0227.

[28]  Dimitri Veras,et al.  Post-main-sequence debris from rotation-induced YORP break-up of small bodies , 2014, 1409.4412.

[29]  Douglas N. C. Lin,et al.  Post-oligarchic Evolution of Protoplanetary Embryos and the Stability of Planetary Systems , 2007, 0705.2164.

[30]  Jack Wisdom,et al.  The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem , 1980 .

[31]  R. F. Jameson,et al.  High-resolution optical spectroscopy of Praesepe white dwarfs , 2009, 0901.4464.

[32]  Henry W. Lin,et al.  FINDING ROCKY ASTEROIDS AROUND WHITE DWARFS BY THEIR PERIODIC THERMAL EMISSION , 2014, 1408.2832.

[33]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[34]  B. Hansen,et al.  MIGRATION THEN ASSEMBLY: FORMATION OF NEPTUNE-MASS PLANETS INSIDE 1 AU , 2011, 1105.2050.

[35]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[36]  Alice C. Quillen,et al.  Three‐body resonance overlap in closely spaced multiple‐planet systems , 2011, 1106.0156.

[37]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[38]  Amy Bonsor,et al.  Dynamical effects of stellar mass-loss on a Kuiper-like belt , 2011, 1102.3185.

[39]  Harold F. Levison,et al.  LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK , 2011 .

[40]  W. Henning,et al.  TIDAL HEATING IN MULTILAYERED TERRESTRIAL EXOPLANETS , 2014 .

[41]  N. Evans,et al.  The great escape - III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context , 2013, 1310.1395.

[42]  Mukremin Kilic,et al.  Excess Infrared Radiation from the Massive DAZ White Dwarf GD 362: A Debris Disk? , 2005, astro-ph/0509188.

[43]  Dimitri Veras,et al.  Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution , 2013, 1302.3615.

[44]  A. Wolszczan,et al.  Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12 , 1994, Science.

[45]  Inseok Song,et al.  A Dusty Disk around GD 362, a White Dwarf with a Uniquely High Photospheric Metal Abundance , 2005 .

[46]  Marc J. Kuchner,et al.  The Dust Cloud around the White Dwarf G29-38 , 2005, astro-ph/0511358.

[47]  James R. Graham,et al.  The infrared excess of G29-38: A brown dwarf or dust? , 1990 .

[48]  W. Burgett,et al.  A SEARCH FOR PLANETARY ECLIPSES OF WHITE DWARFS IN THE Pan-STARRS1 MEDIUM-DEEP FIELDS , 2014, 1410.0052.

[49]  F. Mignard The evolution of the lunar orbit revisited. I , 1979 .

[50]  S. Chatterjee,et al.  INSIDE-OUT PLANET FORMATION , 2013, 1306.0576.

[51]  B. T. Gansicke,et al.  Cool DZ white dwarfs in the SDSS , 2011, 1105.0268.

[52]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[53]  Jack J. Lissauer,et al.  The Effects of Post-Main-Sequence Solar Mass Loss on the Stability of Our Planetary System , 1998 .

[54]  David J. Wilson,et al.  Variable emission from a gaseous disc around a metal-polluted white dwarf , 2014, 1409.2490.

[55]  C. Tout,et al.  An Exoplanet's Response to Anisotropic Stellar Mass-Loss During Birth and Death , 2013, 1308.0599.

[56]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[57]  N. Gorelick,et al.  PLANET–PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS , 2009, 0903.4700.

[58]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS , 2009, 0905.3741.

[59]  M. Wyatt,et al.  The great escape: how exoplanets and smaller bodies desert dying stars , 2011, 1107.1239.

[60]  J. R. Donnison The Hill stability of binary asteroid and binary Kuiper Belt systems , 2011 .

[61]  Noam Soker,et al.  Transient outburst events from tidally disrupted asteroids near white dwarfs , 2012, 1203.2726.

[62]  A. Johansen,et al.  CAN PLANETARY INSTABILITY EXPLAIN THE KEPLER DICHOTOMY? , 2012, 1206.6898.

[63]  N. Evans,et al.  Planetary orbital equations in externally-perturbed systems: position and velocity-dependent forces , 2012, 1210.6658.

[64]  M. Efroimsky Celestial Mechanics and Dynamical Astronomy Equations for the orbital elements : Hidden symmetry , 2009 .

[65]  H. Ludwig,et al.  Spectroscopic analysis of DA white dwarfs with 3D model atmospheres , 2013, 1309.0886.

[66]  A. Bloch,et al.  EVOLUTION OF PLANETARY ORBITS WITH STELLAR MASS LOSS AND TIDAL DISSIPATION , 2013, 1310.2577.

[67]  M. Jura,et al.  THE DROP DURING LESS THAN 300 DAYS OF A DUSTY WHITE DWARF'S INFRARED LUMINOSITY , 2014, 1408.1618.

[68]  Alice C. Quillen,et al.  The total number of giant planets in debris discs with central clearings , 2007, 0706.1684.

[69]  V. Safronov,et al.  Relative sizes of the largest bodies during the accumulation of planets , 1969 .

[70]  S. Ida,et al.  EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS , 2012, 1209.1320.

[71]  Katherine M. Deck,et al.  FIRST-ORDER RESONANCE OVERLAP AND THE STABILITY OF CLOSE TWO-PLANET SYSTEMS , 2013, 1307.8119.

[72]  P. Bergeron,et al.  The Formation Rate and Mass and Luminosity Functions of DA White Dwarfs from the Palomar Green Survey , 2004, astro-ph/0406657.

[73]  B. Hansen,et al.  TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE , 2013, 1301.7431.

[74]  Eric Agol,et al.  TRANSIT SURVEYS FOR EARTHS IN THE HABITABLE ZONES OF WHITE DWARFS , 2011, 1103.2791.

[75]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[76]  E. Ford,et al.  SECULAR EVOLUTION OF HD 12661: A SYSTEM CAUGHT AT AN UNLIKELY TIME , 2008, 0811.0001.

[77]  W. Farr,et al.  Secular Dynamics in Hierarchical Three-Body Systems , 2011, 1107.2414.

[78]  Hanno Rein,et al.  ias15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits , 2014, 1409.4779.

[79]  D. Veras A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876 , 2007, 0709.0005.

[80]  R. G. West,et al.  Detection limits for close eclipsing and transiting substellar and planetary companions to white dwarfs in the WASP survey , 2010, 1012.1992.

[81]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[82]  R. Rafikov,et al.  METAL ACCRETION ONTO WHITE DWARFS CAUSED BY POYNTING–ROBERTSON DRAG ON THEIR DEBRIS DISKS , 2011, 1102.3153.

[83]  D. Veras A simple bound for the variation at closest approach of a small body and star due to general relativity , 2014, 1404.1926.

[84]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[85]  R. Barnes,et al.  Habitable planets around white and brown dwarfs: the perils of a cooling primary. , 2012, Astrobiology.

[86]  K. Kratter,et al.  Planet packing in circumbinary systems , 2013, 1311.2942.

[87]  D. Maoz,et al.  Detecting biomarkers in habitable-zone earths transiting white dwarfs , 2013, 1301.4994.

[88]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[89]  B. Zuckerman,et al.  ANCIENT PLANETARY SYSTEMS ARE ORBITING A LARGE FRACTION OF WHITE DWARF STARS , 2010, 1007.2252.

[90]  John Asher Johnson,et al.  CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY , 2012, 1301.0023.

[91]  S. Tremaine,et al.  SCATTERING OUTCOMES OF CLOSE-IN PLANETS: CONSTRAINTS ON PLANET MIGRATION , 2014, 1401.4457.

[92]  R. P. Butler,et al.  A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone , 2013, 1306.6074.

[93]  B. Zuckerman,et al.  INFRARED SIGNATURES OF DISRUPTED MINOR PLANETS AT WHITE DWARFS , 2009, 0901.0973.

[94]  Adam J. Burgasser,et al.  GASEOUS MATERIAL ORBITING THE POLLUTED, DUSTY WHITE DWARF HE 1349−2305 , 2012, 1204.1132.

[95]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[96]  A. Moro-martin,et al.  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[97]  R. Alexander,et al.  Understanding the assembly of Kepler's compact planetary systems , 2014, 1409.0532.

[98]  B. Hansen,et al.  Eccentric planets and stellar evolution as a cause of polluted white dwarfs , 2014, 1401.5470.

[99]  B. Zuckerman,et al.  Excess infrared radiation from a white dwarf—an orbiting brown dwarf? , 1987, Nature.

[100]  M. Wyatt,et al.  The Solar System's Post-Main Sequence Escape Boundary , 2012, 1201.2412.

[101]  S. Ballard,et al.  THE KEPLER DICHOTOMY AMONG THE M DWARFS: HALF OF SYSTEMS CONTAIN FIVE OR MORE COPLANAR PLANETS , 2014, 1410.4192.

[102]  E. Villaver,et al.  FORETELLINGS OF RAGNARÖK: WORLD-ENGULFING ASYMPTOTIC GIANTS AND THE INHERITANCE OF WHITE DWARFS , 2012, 1210.0328.

[103]  P. Kowalski,et al.  THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS , 2012, 1207.6210.

[104]  R. Mardling Resonance, Chaos and Stability: The Three-Body Problem in Astrophysics , 2008 .

[105]  J. Barnes Effects of Orbital Eccentricity on Extrasolar Planet Transit Detectability and Light Curves , 2007, 0708.0243.

[106]  Dimitri Veras,et al.  A simple scaling for the minimum instability time-scale of two widely spaced planets , 2013, 1305.5540.

[107]  M. Jura A Tidally Disrupted Asteroid around the White Dwarf G29-38 , 2003 .

[108]  D. S. Spiegel,et al.  On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets , 2012, 1211.1013.

[109]  J. Stadel,et al.  THE GENGA CODE: GRAVITATIONAL ENCOUNTERS IN N-BODY SIMULATIONS WITH GPU ACCELERATION , 2013, 1404.2324.

[110]  M. R. Burleigh,et al.  A trio of metal-rich dust and gas discs found orbiting candidate white dwarfs with K-band excess , 2011, 1112.5163.

[111]  S. Tremaine,et al.  SUPER-ECCENTRIC MIGRATING JUPITERS , 2011, 1110.1644.

[112]  M. Holman,et al.  STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS , 2013, 1308.4402.

[113]  G. Ogilvie Tidal Dissipation in Stars and Giant Planets , 2014, 1406.2207.

[114]  P. Goldreich Final spin states of planets and satellites. , 1966 .

[115]  Robert C. Smith,et al.  Distant future of the Sun and Earth revisited , 2008, 0801.4031.

[116]  Chile,et al.  The DODO survey – II. A Gemini direct imaging search for substellar and planetary mass companions around nearby equatorial and Northern hemisphere white dwarfs , 2009, 0901.0532.

[117]  A. Correia,et al.  A semi-empirical stability criterion for real planetary systems with eccentric orbits , 2013, 1309.6861.

[118]  R. Rafikov Runaway accretion of metals from compact discs of debris on to white dwarfs , 2011, 1102.4343.

[119]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[120]  Exoplanets beyond the Solar neighbourhood: Galactic tidal perturbations , 2012, 1212.4150.

[121]  E. Ford,et al.  The Long-Term Dynamical Evolution of Planetary Systems , 2013, 1311.6816.

[122]  A. Quillen,et al.  Stability boundaries for resonant migrating planet pairs , 2013, 1312.6099.

[123]  G. Voyatzis,et al.  Multiplanet destabilization and escape in post-main-sequence systems , 2013, 1301.5441.

[124]  Nikolaos Georgakarakos,et al.  Stability criteria for hierarchical triple systems , 2008, 1408.5431.

[125]  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[126]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[127]  Richard Greenberg,et al.  Stability Limits in Extrasolar Planetary Systems , 2006, astro-ph/0607210.

[128]  Brian D. Metzger,et al.  Global models of runaway accretion in white dwarf debris discs , 2012, 1202.0557.

[129]  S. Tremaine,et al.  Excitation and Propagation of Eccentricity Disturbances in Planetary Systems , 2004, astro-ph/0404396.

[130]  John E. Chambers,et al.  The Stability of Multi-Planet Systems , 1996 .

[131]  R. Rafikov,et al.  GLOBAL MODELING OF RADIATIVELY DRIVEN ACCRETION OF METALS FROM COMPACT DEBRIS DISKS ONTO WHITE DWARFS , 2011, 1106.1653.

[132]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[133]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS , 2010, 1001.3409.

[134]  S. Csizmadia,et al.  THE PLANETARY SYSTEM TO KIC 11442793: A COMPACT ANALOGUE TO THE SOLAR SYSTEM , 2013, 1310.6248.

[135]  M. Wyatt,et al.  Dependence of a planet's chaotic zone on particle eccentricity: the shape of debris disc inner edges , 2011, 1110.1282.

[136]  N. Drost,et al.  The Astrophysical Multipurpose Software Environment , 2013, 1307.3016.

[137]  Eva Villaver,et al.  HOT JUPITERS AND COOL STARS , 2014, 1407.7879.

[138]  D. Leisawitz,et al.  THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG , 2011, 1110.6162.

[139]  O. M. Guilera,et al.  Terrestrial planets in high-mass disks without gas giants , 2013 .

[140]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[141]  Detlev Koester,et al.  The frequency of planetary debris around young white dwarfs , 2014, 1404.2617.

[142]  John H. Debes,et al.  Are There Unstable Planetary Systems around White Dwarfs , 2002 .

[143]  A. Bloch,et al.  Evolution of Planetary Systems with Time Dependent Stellar Mass Loss , 2013, 1303.3841.

[144]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[145]  D. Veras,et al.  Disrupting primordial planet signatures: the close encounter of two single‐planet exosystems in the Galactic disc , 2012, 1206.4694.

[146]  S. Raymond,et al.  SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS , 2013, 1309.1467.

[147]  M. Efroimsky,et al.  TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE , 2012, 1209.1615.

[148]  K. Williams,et al.  A GRAVITATIONAL REDSHIFT DETERMINATION OF THE MEAN MASS OF WHITE DWARFS. DA STARS , 2010, 1002.2009.

[149]  P. Armitage,et al.  The Influence of Massive Planet Scattering on Nascent Terrestrial Planets , 2005, astro-ph/0501356.

[150]  S. Raymond,et al.  Predicting Planets in Known Extrasolar Planetary Systems. I. Test Particle Simulations , 2004, astro-ph/0402542.

[151]  J. Farihi,et al.  Stochastic accretion of planetesimals on to white dwarfs: constraints on the mass distribution of accreted material from atmospheric pollution , 2014, 1401.6173.

[152]  Jack J. Lissauer,et al.  Orbital stability of systems of closely-spaced planets , 2009 .