Generically Globally Rigid Graphs Have Generic Universally Rigid Frameworks

We show that any graph that is generically globally rigid in ℝ d has a realization in ℝ d that is both generic and universally rigid. This also implies that the graph also must have a realization in ℝ d that is both infinitesimally rigid and universally rigid; such a realization serves as a certificate of generic global rigidity. Our approach involves an algorithm by Lovász, Saks and Schrijver that, for a sufficiently connected graph, constructs a general position orthogonal representation of the vertices, and a result of Alfakih that shows how this representation leads to a stress matrix and a universally rigid framework of the graph.

[1]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[2]  Steven J. Gortler,et al.  Characterizing the Universal Rigidity of Generic Frameworks , 2014, Discret. Comput. Geom..

[3]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[4]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[5]  Volkmar Welker,et al.  On the ideal of orthogonal representations of a graph in R2 , 2015, Adv. Appl. Math..

[6]  L. Lovász,et al.  Orthogonal representations and connectivity of graphs , 1989 .

[7]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[8]  Robert Connelly On Generic Global Rigidity , 1990, Applied Geometry And Discrete Mathematics.

[9]  Abdo Y. Alfakih,et al.  Graph connectivity and universal rigidity of bar frameworks , 2014, Discret. Appl. Math..

[10]  Matthew Jacobs,et al.  Connecting Global and Universal Rigidity , 2010, 1011.4122.

[11]  B. Roth,et al.  The rigidity of graphs , 1978 .

[12]  Steven J. Gortler,et al.  Generic Global Rigidity in Complex and Pseudo-Euclidean Spaces , 2012, 1212.6685.

[13]  Philippe Block,et al.  An overview and comparison of structural form finding methods for general networks , 2012 .

[14]  Charles R. Johnson,et al.  Connections between the real positive semidefinite and distance matrix completion problems , 1995 .

[15]  R. Connelly,et al.  Mathematics and Tensegrity , 1998, American Scientist.

[16]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[17]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[18]  M. Fréchet Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .

[19]  Yinyu Ye,et al.  On affine motions and bar frameworks in general position , 2010, 1009.3318.

[20]  Robert Connelly,et al.  Universal Rigidity of Complete Bipartite Graphs , 2015, Discrete & Computational Geometry.

[21]  David Eisenbud,et al.  LINEAR SECTIONS OF DETERMINANTAL VARIETIES , 1988 .

[22]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[23]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[24]  Jacek Stasica Smooth points of a semialgebraic set , 2003 .

[25]  Anthony Man-Cho So,et al.  Universal Rigidity and Edge Sparsification for Sensor Network Localization , 2010, SIAM J. Optim..

[26]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[27]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[28]  Tibor Jordán,et al.  On universally rigid frameworks on the line , 2015, Contributions Discret. Math..

[29]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[30]  H. Whitney Elementary Structure of Real Algebraic Varieties , 1957 .

[31]  Tibor Jordán,et al.  A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid , 2003, J. Comb. Theory, Ser. B.

[32]  Tibor Jordán,et al.  Egerváry Research Group on Combinatorial Optimization Operations Preserving the Global Rigidity of Graphs and Frameworks in the Plane Operations Preserving the Global Rigidity of Graphs and Frameworks in the Plane , 2022 .

[33]  M. Merle,et al.  Singularites isolees et sections planes de varietes determinantielles , 1982 .

[34]  B. Roth,et al.  The rigidity of graphs, II , 1979 .

[35]  Robert Connelly,et al.  Global Rigidity: The Effect of Coning , 2010, Discret. Comput. Geom..

[36]  Alexander Schrijver,et al.  A correction: orthogonal representations and connectivity of graphs , 2000 .

[37]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[38]  R. Connelly Rigidity and energy , 1982 .

[39]  Leo Liberti,et al.  Euclidean Distance Geometry and Applications , 2012, SIAM Rev..

[40]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .