Exact Solutions to the Complex Ginzburg-Landau Equation from a Linear System

[1]  Robert Conte,et al.  Link between solitary waves and projective Riccati equations , 1992 .

[2]  D. Levi,et al.  Painlevé transcendents : their asymptotics and physical applications , 1992 .

[3]  R. Conte Unification of PDE and ODE Versions of Painlevé Analysis into a Single Invariant Version , 1992 .

[4]  Robert Conte,et al.  Invariant Painlevé analysis of partial differential equations , 1989 .

[5]  L. Keefe Integrability and structural stability of solutions to the Ginzburg–Landau equation , 1986 .

[6]  K. Nozaki,et al.  Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation , 1985 .

[7]  Kazuhiro Nozaki,et al.  Exact Solutions of the Generalized Ginzburg-Landau Equation , 1984 .

[8]  Kazuhiro Nozaki,et al.  Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation , 1983 .

[9]  M. Tabor,et al.  Painlevé property and multicomponent isospectral deformation equations , 1983 .

[10]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[11]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[12]  Allan P. Fordy,et al.  Some remarkable nonlinear transformations , 1980 .

[13]  G. Soliani,et al.  Nonlinear Evolution Equations and Dynamical Systems , 1980 .

[14]  L. Stenflo,et al.  Nonlinear Schrödinger equation including growth and damping , 1977 .

[15]  John Whitehead,et al.  Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.