Quantum metrology with spin cat states under dissipation

Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.

[1]  William J Munro,et al.  Quantum metrology with entangled coherent states. , 2011, Physical review letters.

[2]  Jiangfeng Du,et al.  High-resolution vector microwave magnetometry based on solid-state spins in diamond , 2015, Nature Communications.

[3]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[4]  Chaohong Lee Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose-Einstein condensate. , 2008, Physical review letters.

[5]  D. Spehner,et al.  Macroscopic superpositions in Bose-Josephson junctions: Controlling decoherence due to atom losses , 2013, 1302.2069.

[6]  D. Spehner,et al.  Noise in Bose Josephson junctions: Decoherence and phase relaxation , 2009, 0911.0655.

[7]  Martin Fraas,et al.  Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.

[8]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[9]  Hao Zhang,et al.  Collective state measurement of mesoscopic ensembles with single-atom resolution. , 2012, Physical review letters.

[10]  D. Hume,et al.  Accurate atom counting in mesoscopic ensembles. , 2013, Physical review letters.

[11]  A. Rezakhani,et al.  Quantum metrology in open systems: dissipative Cramér-Rao bound. , 2013, Physical review letters.

[12]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[13]  Hui Dai,et al.  Nonlinear quantum interferometry with Bose condensed atoms , 2011, 1110.4734.

[14]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[15]  Chaohong Lee Adiabatic Mach-Zehnder interferometry on a quantized Bose-Josephson junction. , 2006, Physical review letters.

[16]  C. Simon,et al.  Proposal for the creation and optical detection of spin cat states in Bose-Einstein condensates. , 2014, Physical review letters.

[17]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[18]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[19]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[20]  Hyunseok Jeong,et al.  Violation of the Bell-Clauser-Horne-Shimony-Holt inequality using imperfect photodetectors with optical hybrid states , 2013, 1309.2033.

[21]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[22]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[23]  Sean D. Huver,et al.  Entangled Fock states for Robust Quantum Optical Metrology, Imaging, and Sensing , 2008, 0805.0296.

[24]  D. Hume,et al.  Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. , 2014, Physical review letters.

[25]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[26]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[27]  Cold, dilute, trapped bosons as an open quantum system , 1996, quant-ph/9611008.

[28]  Hiroshi Yamaguchi,et al.  Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit. , 2014, Physical review letters.

[29]  K. Jensen,et al.  Quantum noise limited and entanglement-assisted magnetometry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[30]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[31]  M. Bishof,et al.  A Quantum Many-Body Spin System in an Optical Lattice Clock , 2012, Science.

[32]  J. Schmiedmayer,et al.  Integrated Mach–Zehnder interferometer for Bose–Einstein condensates , 2013, Nature Communications.

[33]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[34]  Kumi Y. Inoue,et al.  Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device , 2016, Front. Physiol..

[35]  Heng Fan,et al.  Demonstration of entanglement-enhanced phase estimation in solid , 2014, Nature Communications.

[36]  Chaohong Lee,et al.  Quantum Metrology with Cold Atoms , 2013, 1308.6092.

[37]  Philipp Treutlein,et al.  Quantum metrology with a scanning probe atom interferometer. , 2013, Physical review letters.

[38]  Mark J. Everitt,et al.  Collapse and Revival and Cat States with an N Spin System , 2013 .

[39]  A Acín,et al.  Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.

[40]  I. Sokolov,et al.  Dynamical localization and eigenstate localization in trap models , 2014, 1403.7082.

[41]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[42]  C. Gross,et al.  Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates , 2012, 1203.5359.

[43]  K. Rzążewski,et al.  Background atoms and decoherence in optical lattices , 2009, 0909.2515.

[44]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[45]  W. Ertmer,et al.  Twin Matter Waves for Interferometry Beyond the Classical Limit , 2011, Science.

[46]  U. Dorner,et al.  Quantum frequency estimation with trapped ions and atoms , 2011, 1102.1361.

[47]  Q. Gu,et al.  Dynamics of two-component Bose-Einstein condensates coupled with the environment , 2011, 1102.4426.

[48]  Confined quantum Zeno dynamics of a watched atomic arrow , 2014, 1402.0111.

[49]  D. Spehner,et al.  Effect of one-, two-, and three-body atom loss processes on superpositions of phase states in Bose-Josephson junctions , 2014, 1401.7238.

[50]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[51]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[52]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[53]  G. Agarwal,et al.  Atomic Schrödinger cat states , 1997 .

[54]  I. Georgescu Quantum technology: The golden apple , 2014 .

[55]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.

[56]  Max Bolliger,et al.  The golden apple , 1970 .

[57]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.