A wavelet method for the characterization of spatiotemporal patterns

This paper introduces a wavelet-based method for the characterization of spatiotemporal patterns. Based on the wavelet multiresolution analysis, two wavelet indices, multiscale accumulative density (MAD) and multiscale accumulative change (MAC), are proposed for the characterization of the dynamics of the spatiotemporal patterns. Both indices are constructed by using orthogonal wavelet projection operators. The MAD is a measure of the spatial complexity of a pattern at a given time, whereas the MAC characterizes the spatial complexity of instantaneous change of the spatiotemporal patterns at a given time. The ratio of the MAD indices between the lowest and the highest scales reflects the order of coherence in a pattern. The time series of both MAD and MAC provide the dynamical information of morphological pattern evolutions. Numerical experiments based on the Cahn–Hilliard equation indicate that the proposed method is efficient for quantitatively characterizing the dynamics of the spatiotemporal patterns. © 2002 Published by Elsevier Science B.V.

[1]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[2]  J. E. Hilliard,et al.  Spinodal decomposition: A reprise , 1971 .

[3]  Steven K. Rogers,et al.  Discrete, spatiotemporal, wavelet multiresolution analysis method for computing optical flow , 1994 .

[4]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[5]  Henry S. Greenside,et al.  KARHUNEN-LOEVE DECOMPOSITION OF EXTENSIVE CHAOS , 1996, chao-dyn/9610007.

[6]  Shuguang Guan,et al.  Fourier-Bessel analysis of patterns in a circular domain , 2001 .

[7]  S Stramaglia,et al.  Multiscale analysis of blood pressure signals. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Gemunu H. Gunaratne,et al.  Karhunen-Loève analysis of spatiotemporal flame patterns , 1998 .

[9]  Alan C. Newell,et al.  Natural patterns and wavelets , 1998 .

[10]  Ultrametric Structure of Multiscale Energy Correlations in Turbulent Models , 1997, chao-dyn/9705018.

[11]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[12]  Jean-Marc Odobez,et al.  Adaptive motion-compensated wavelet filtering for image sequence coding , 1997, IEEE Trans. Image Process..

[13]  S. Ciliberto,et al.  Estimating the Number of Degrees of Freedom in Spatially Extended Systems , 1991 .

[14]  Hiroshi Shibata,et al.  Quantitative characterization of spatiotemporal chaos , 1998 .

[15]  Permann,et al.  Wavelet analysis of time series for the Duffing oscillator: The detection of order within chaos. , 1992, Physical review letters.

[16]  Frank Kwasniok,et al.  The reduction of complex dynamical systems using principal interaction patterns , 1996 .

[17]  S. Thurner,et al.  Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology , 1997, adap-org/9711003.

[18]  Meneveau,et al.  Dual spectra and mixed energy cascade of turbulence in the wavelet representation. , 1991, Physical review letters.

[19]  Y. Meyer Wavelets and Operators , 1993 .

[20]  Eberhard Bodenschatz,et al.  Importance of Local Pattern Properties in Spiral Defect Chaos , 1998 .

[21]  Jae-Khun Chang,et al.  Dynamic motion analysis using wavelet flow surface images , 1999, Pattern Recognit. Lett..

[22]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[23]  Dieter Armbruster,et al.  kltool: A tool to analyze spatiotemporal complexity. , 1994, Chaos.

[24]  John W. Woods,et al.  Motion-compensated 3-D subband coding of video , 1999, IEEE Trans. Image Process..

[25]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[26]  Francisco J. Varela,et al.  Entropy quantification of human brain spatio-temporal dynamics , 1996 .

[27]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[28]  Daniel Walgraef,et al.  Spatio-temporal pattern formation , 1996 .

[29]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[30]  D. Broomhead,et al.  Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems. , 1998, Chaos.

[31]  Jung,et al.  Coherent structure analysis of spatiotemporal chaos , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Adele Cutler,et al.  Archetypal analysis of spatio-temporal dynamics , 1996 .

[33]  Analysis and characterization of complex spatio-temporal patterns in nonlinear reaction-diffusion systems , 1996, chao-dyn/9606013.

[34]  G. Wei,et al.  A unified approach for the solution of the Fokker-Planck equation , 2000, physics/0004074.

[35]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[36]  Lonnie H. Hudgins,et al.  Wavelet transforms and atmopsheric turbulence. , 1993, Physical review letters.

[37]  Adele Cutler,et al.  Introduction to archetypal analysis of spatio-temporal dynamics , 1996 .

[38]  Measuring the onset of spatiotemporal intermittency. , 1990, Physical review letters.

[39]  David A. Egolf Dynamical Dimension of Defects in Spatiotemporal Chaos , 1998 .

[40]  Parlitz,et al.  Predicting low-dimensional spatiotemporal dynamics using discrete wavelet transforms. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Tsimring Nested strange attractors in spatiotemporal chaotic systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Dynamical scaling behavior of the Swift-Hohenberg equation following a quench to the modulated state , 1997, patt-sol/9808001.

[43]  Mark J. T. Smith,et al.  SpatioTemporal Wavelets: A Group-Theoretic Construction for Motion Estimation and Tracking , 2000, SIAM J. Appl. Math..

[44]  L. Sirovich Chaotic dynamics of coherent structures , 1989 .

[45]  F. T. Arecchi,et al.  Adaptive recognition and filtering of noise using wavelets , 1997 .

[46]  Martienssen,et al.  Characterization of spatiotemporal chaos from time series. , 1993, Physical review letters.

[47]  A Hutt,et al.  Analysis of spatiotemporal signals: a method based on perturbation theory. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[49]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[50]  J. Fröhlich,et al.  Computation of decaying turbulence in an adaptive wavelet basis , 1999 .

[51]  Gian-Luca Oppo,et al.  Measuring disorder with correlation functions of averaged patterns , 1996 .

[52]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[53]  A. Politi,et al.  Fractal dimension of spatially extended systems , 1991 .

[54]  Politi,et al.  Towards a statistical mechanics of spatiotemporal chaos. , 1992, Physical review letters.

[55]  Müller-Krumbhaar,et al.  Dynamics of periodic pattern formation. , 1986, Physical review. A, General physics.