Foldio: Digital Fabrication of Interactive and Shape-Changing Objects With Foldable Printed Electronics

Foldios are foldable interactive objects with embedded input sensing and output capabilities. Foldios combine the advantages of folding for thin, lightweight and shape-changing objects with the strengths of thin-film printed electronics for embedded sensing and output. To enable designers and end-users to create highly custom interactive foldable objects, we contribute a new design and fabrication approach. It makes it possible to design the foldable object in a standard 3D environment and to easily add interactive high-level controls, eliminating the need to manually design a fold pattern and low-level circuits for printed electronics. Second, we contribute a set of printable user interface controls for touch input and display output on folded objects. Moreover, we contribute controls for sensing and actuation of shape-changeable objects. We demonstrate the versatility of the approach with a variety of interactive objects that have been fabricated with this framework.

[1]  Joseph A. Paradiso,et al.  PrintSense: a versatile sensing technique to support multimodal flexible surface interaction , 2014, CHI.

[2]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[3]  Michael Eisenberg,et al.  Easigami: virtual creation by physical folding , 2012, TEI.

[4]  Björn Hartmann,et al.  A series of tubes: adding interactivity to 3D prints using internal pipes , 2014, UIST.

[5]  Kris Luyten,et al.  PaperPulse: an integrated approach for embedding electronics in paper designs , 2015, SIGGRAPH Posters.

[6]  Erik D. Demaine,et al.  Geometric folding algorithms - linkages, origami, polyhedra , 2007 .

[7]  J. O'Rourke,et al.  Geometric Folding Algorithms: Linkages , 2007 .

[8]  Hod Lipson,et al.  ModelCraft: capturing freehand annotations and edits on physical 3D models , 2006, UIST.

[9]  Hiroshi Ishii,et al.  PneUI: pneumatically actuated soft composite materials for shape changing interfaces , 2013, UIST.

[10]  Ivan Poupyrev,et al.  Printed optics: 3D printing of embedded optical elements for interactive devices , 2012, UIST.

[11]  Björn Hartmann,et al.  Midas: fabricating custom capacitive touch sensors to prototype interactive objects , 2012, UIST '12.

[12]  Andreas Butz,et al.  Sketch-a-TUI: low cost prototyping of tangible interactions using cardboard and conductive ink , 2012, Tangible and Embedded Interaction.

[13]  Jürgen Steimle,et al.  PrintScreen: fabricating highly customizable thin-film touch-displays , 2014, UIST.

[14]  Joseph A. Paradiso,et al.  A cuttable multi-touch sensor , 2013, UIST.

[15]  Jürgen Steimle,et al.  FoldMe: interacting with double-sided foldable displays , 2012, Tangible and Embedded Interaction.

[16]  Barbara Stadlober,et al.  PyzoFlex: printed piezoelectric pressure sensing foil , 2012, UIST.

[17]  Daniela Rus,et al.  Foldable Joints for Foldable Robots , 2015, ISER.

[18]  Mark D. Gross,et al.  Interactive paper devices: end-user design & fabrication , 2010, TEI '10.

[19]  Hiroshi Ishii,et al.  inFORM: dynamic physical affordances and constraints through shape and object actuation , 2013, UIST.

[20]  C. Y. Lee An Algorithm for Path Connections and Its Applications , 1961, IRE Trans. Electron. Comput..

[21]  Ivan Poupyrev,et al.  PAPILLON: designing curved display surfaces with printed optics , 2013, UIST.

[22]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[23]  Masaaki Fukumoto,et al.  FluxPaper: Reinventing Paper with Dynamic Actuation Powered by Magnetic Flux , 2015, CHI.

[24]  Ayellet Tal,et al.  Paper craft models from meshes , 2006, The Visual Computer.

[25]  J. Mitani,et al.  Making papercraft toys from meshes using strip-based approximate unfolding , 2004, SIGGRAPH 2004.

[26]  Jie Qi,et al.  Electronic popables: exploring paper-based computing through an interactive pop-up book , 2010, TEI '10.

[27]  Masahiko Inami,et al.  Move-it: interactive sticky notes actuated by shape memory alloys , 2011, CHI Extended Abstracts.

[28]  Kening Zhu,et al.  AutoGami: a low-cost rapid prototyping toolkit for automated movable paper craft , 2013, CHI.

[29]  Tomohiro Tachi,et al.  Origamizing Polyhedral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[30]  Björn Hartmann,et al.  Sauron: embedded single-camera sensing of printed physical user interfaces , 2013, UIST.

[31]  Stefanie Müller,et al.  LaserOrigami: laser-cutting 3D objects , 2013, CHI Extended Abstracts.

[32]  David Kim,et al.  FlexSense: a transparent self-sensing deformable surface , 2014, UIST.

[33]  Gregory D. Abowd,et al.  Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices , 2013, UbiComp.

[34]  Keith A. Seffen,et al.  Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization , 2014 .