Parcellation of Macaque Cortex with Anatomical Connectivity Profiles

The macaque model has been widely used to investigate the brain mechanisms of specific cognitive functions and psychiatric disorders. However, a detailed functional architecture map of the macaque cortex in vivo is still lacking. Here, we aimed to construct a new macaque cortex atlas based on its anatomical connectivity profiles using in vivo diffusion MRI. First, we defined the macaque cortical seed areas using the NeuroMaps atlas. Then, we applied the anatomical connectivity patterns-based parcellation approach to parcellate the macaque cortex into 80 subareas in each hemisphere, which were approximately symmetric between the two hemispheres. In each hemisphere, we identified 14 subareas in the frontal cortex, 9 subareas in the somatosensory cortex, 13 subareas in the parietal cortex, 16 subareas in the temporal cortex, 16 subareas in the occipital cortex, and 12 subareas in the limbic system. Finally, the graph-based network analyses of the anatomical network based on newly constructed macaque cortex atlas identified seven hub areas including bilateral ventral premotor cortex, bilateral superior parietal lobule, right medial precentral gyrus, and right precuneus. This newly constructed macaque cortex atlas may facilitate studies of the structure and functions of the macaque brain in the future.

[1]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[2]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[3]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[4]  D. Pandya,et al.  Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[5]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[6]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[7]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[8]  L Krubitzer,et al.  A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[10]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[11]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[12]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[13]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[14]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[15]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[16]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[17]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[18]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[19]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[20]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[21]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. B. Cipolloni,et al.  Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey , 2004, The Journal of comparative neurology.

[23]  Marcus Kaiser,et al.  Edge vulnerability in neural and metabolic networks , 2004, Biological Cybernetics.

[24]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[25]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[26]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[27]  J. Thiran,et al.  Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[28]  Martin Styner,et al.  Automatic brain segmentation in rhesus monkeys , 2007, SPIE Medical Imaging.

[29]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[30]  J. Capitanio,et al.  Contributions of non-human primates to neuroscience research , 2008, The Lancet.

[31]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[32]  Alan C. Evans,et al.  Age- and Gender-Related Differences in the Cortical Anatomical Network , 2009, The Journal of Neuroscience.

[33]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[34]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[35]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[36]  D. Modha,et al.  Network architecture of the long-distance pathways in the macaque brain , 2010, Proceedings of the National Academy of Sciences.

[37]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[38]  O. Sporns,et al.  White matter maturation reshapes structural connectivity in the late developing human brain , 2010, Proceedings of the National Academy of Sciences.

[39]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[40]  M. Mallar Chakravarty,et al.  An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space) , 2011, NeuroImage.

[41]  N. Logothetis,et al.  fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques , 2011, Neuron.

[42]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[43]  D. Pandya,et al.  The cortical connectivity of the prefrontal cortex in the monkey brain , 2012, Cortex.

[44]  David W. McNeal,et al.  Cytoarchitecture and cortical connections of the anterior cingulate and adjacent somatomotor fields in the rhesus monkey , 2012, Brain Research Bulletin.

[45]  O. Sporns,et al.  Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication , 2012, PloS one.

[46]  Yu Zhang,et al.  Tractography‐based parcellation of the human left inferior parietal lobule , 2012, NeuroImage.

[47]  Ravi S. Menon,et al.  Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. , 2012, Journal of neurophysiology.

[48]  Ravi S. Menon,et al.  Resting-state connectivity identifies distinct functional networks in macaque cingulate cortex. , 2012, Cerebral cortex.

[49]  Torsten Rohlfing,et al.  The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization , 2012, Front. Neuroinform..

[50]  D. Jeanmonod,et al.  The Insula of Reil Revisited: Multiarchitectonic Organization in Macaque Monkeys , 2011, Cerebral cortex.

[51]  Leah Krubitzer,et al.  Topographic Maps within Brodmann's Area 5 of macaque monkeys. , 2012, Cerebral cortex.

[52]  Matthew A. Lambon Ralph,et al.  Convergent Connectivity and Graded Specialization in the Rostral Human Temporal Lobe as Revealed by Diffusion-Weighted Imaging Probabilistic Tractography , 2012, Journal of Cognitive Neuroscience.

[53]  Wei Li,et al.  Subregions of the human superior frontal gyrus and their connections , 2013, NeuroImage.

[54]  孙志华 Connectivity-Based Parcellation of the Human Frontal Pole with diffusion tensor imaging. , 2013 .

[55]  Robert Desimone,et al.  Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4 , 2014, Nature Neuroscience.

[56]  Tianzi Jiang,et al.  Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. , 2014, Cerebral cortex.

[57]  Adam G. Thomas,et al.  Comparison of Human Ventral Frontal Cortex Areas for Cognitive Control and Language with Areas in Monkey Frontal Cortex , 2014, Neuron.

[58]  Stefan Everling,et al.  Broad intrinsic functional connectivity boundaries of the macaque prefrontal cortex , 2014, NeuroImage.

[59]  Chunshui Yu,et al.  Connectivity-based parcellation of the human posteromedial cortex. , 2014, Cerebral Cortex.

[60]  Stefan Everling,et al.  Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI , 2015, NeuroImage.

[61]  Tianzi Jiang,et al.  Determination of the posterior boundary of Wernicke's area based on multimodal connectivity profiles , 2015, Human brain mapping.

[62]  Yundi Shi,et al.  A diffusion tensor MRI atlas of the postmortem rhesus macaque brain , 2015, NeuroImage.

[63]  Tianzi Jiang,et al.  Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches , 2015, Human brain mapping.

[64]  Nikos K. Logothetis,et al.  Validation of High-Resolution Tractography Against In Vivo Tracing in the Macaque Visual Cortex , 2015, Cerebral cortex.

[65]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[66]  R. Tsien,et al.  Specificity and Stability in Topology of Protein Networks , 2022 .