Predicting antenna pattern degradations in microstrip reflectarrays through interval arithmetic

The effects on the antenna power pattern of the tolerances in etching the microstrip patches and in the knowledge of the substrate characteristics of reflectarray antennas are predicted with an approach based on the arithmetic of intervals and the interval analysis (IA). The uncertainties on the geometric and electric antenna parameters are defined as intervals and the rules of IA are applied to determine the bounds of deviation of the actual power pattern with respect to the nominal pattern. A set of representative results is reported to validate the proposed approach and to show its reliability and efficiency when considering different tolerance errors and various operational conditions.

[1]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[2]  Yahya Rahmat-Samii,et al.  Technology Trends and Challenges of Antennas for Satellite Communication Systems , 2015, IEEE Transactions on Antennas and Propagation.

[3]  Roberto Sorrentino,et al.  A Transportable Reflectarray Antenna for Satellite Ku-band Emergency Communications , 2015, IEEE Transactions on Antennas and Propagation.

[4]  Hyeongdong Kim,et al.  Decision of Error Tolerance in Array Element by the , 2005 .

[5]  Andrea Massa,et al.  Sparsening Conformal Arrays Through a Versatile $BCS$-Based Method , 2014, IEEE Transactions on Antennas and Propagation.

[6]  P. Rocca,et al.  Dealing With Uncertainties on Phase Weighting of Linear Antenna Arrays by Means of Interval-Based Tolerance Analysis , 2015, IEEE Transactions on Antennas and Propagation.

[7]  Giovanni Toso,et al.  Guest Editorial for the Special Issue on Innovative Phased Array Antennas Based on Non-Regular Lattices and Overlapped Subarrays , 2014 .

[8]  S. Costanzo,et al.  Aperture-Coupled Reflectarrays with Enhanced Bandwidth Features , 2008 .

[9]  J. Ruze,et al.  The effect of aperture errors on the antenna radiation pattern , 1952 .

[10]  Erik Jorgensen,et al.  The Generalized Direct Optimization Technique for Printed Reflectarrays , 2014, IEEE Transactions on Antennas and Propagation.

[11]  J. Ruze Antenna tolerance theory—A review , 1966 .

[12]  T. A. Metzler,et al.  Analysis of a reflectarray antenna using microstrip patches of variable size , 1993 .

[13]  Piero Angeletti,et al.  Array Antennas With Jointly Optimized Elements Positions and Dimensions Part I: Linear Arrays , 2014, IEEE Transactions on Antennas and Propagation.

[14]  D. Pozar Radiation and scattering from a microstrip patch on a uniaxial substrate , 1987 .

[15]  Thomas Allan Metzler Design and analysis of a microstrip reflectarray , 1993 .

[16]  P. Rocca,et al.  Analysis of the Pattern Tolerances in Linear Arrays With Arbitrary Amplitude Errors , 2013, IEEE Antennas and Wireless Propagation Letters.

[17]  Paolo Rocca,et al.  Tolerance Analysis of Antenna Arrays Through Interval Arithmetic , 2013, IEEE Transactions on Antennas and Propagation.

[18]  M. Cuhaci,et al.  A broadband reflectarray antenna with double square rings , 2006 .

[19]  R. Pogorzelski,et al.  A Ka-band microstrip reflectarray with elements having variable rotation angles , 1998 .

[20]  J. Encinar Design of two-layer printed reflectarrays using patches of variable size , 2001 .

[21]  S. Costanzo,et al.  Bandwidth enhancement of aperture-coupled reflectarrays , 2006 .

[22]  Qi Luo,et al.  Design and Analysis of a Reflectarray Using Slot Antenna Elements for Ka-band SatCom , 2015, IEEE Transactions on Antennas and Propagation.

[23]  Paolo Rocca,et al.  Interval Arithmetic for Pattern Tolerance Analysis of Parabolic Reflectors , 2014, IEEE Transactions on Antennas and Propagation.