Disordered, strongly scattering porous materials as miniature multipass gas cells.

We investigate the interaction of light and gas in strongly scattering nano- and macroporous media. Manufacturing and structural characterization of ZrO(2), Al(2)O(3) and TiO(2) ceramics with different pore sizes, measurements of optical properties using photon time-of-flight spectroscopy, and high-resolution laser spectroscopy of O(2) at 760 nm are reported. We show that extreme light scattering can be utilized to realize miniature spectroscopic gas cells. Path length enhancement factors up to 750 are reached (5.4 m path through gas for light transmitted through a 7 mm ZrO(2) with 49% porosity and 115 nm pores).

[1]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Markus-Christian Amann,et al.  Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing , 2010 .

[4]  Robert P. H. Chang,et al.  Random laser action in semiconductor powder , 1999 .

[5]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[6]  Georg Maret,et al.  Observation of the critical regime near Anderson localization of light. , 2005, Physical review letters.

[7]  Tomas Svensson,et al.  Laser spectroscopy of gas confined in nanoporous materials , 2009, 0907.5092.

[8]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[9]  Stefan Andersson-Engels,et al.  High sensitivity gas spectroscopy of porous, highly scattering solids. , 2008, Optics letters.

[10]  Wei Jin,et al.  Fast Response Microstructured Optical Fiber Methane Sensor With Multiple Side-Openings , 2010, IEEE Photonics Technology Letters.

[11]  A. Mosk,et al.  Exploiting disorder for perfect focusing , 2009, 0910.0873.

[12]  Sune Svanberg,et al.  Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics. , 2010, Optics express.

[13]  J B McManus,et al.  Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. , 1995, Applied optics.

[14]  G. Maret,et al.  Observation of the critical regime near Anderson localization of light , 2006 .

[15]  A Taddeucci,et al.  Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results. , 1997, Applied optics.

[16]  Saikat Ghosh,et al.  Resonant optical interactions with molecules confined in photonic band-gap fibers. , 2005, Physical review letters.

[17]  R. W. Tjerkstra,et al.  Tunable photonic strength in porous GaP , 2002 .

[18]  Stefan Andersson-Engels,et al.  Concentration measurement of gas embedded in scattering media by employing absorption and time-resolved laser spectroscopy. , 2002, Applied optics.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  Ralph P. Tatam,et al.  Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells , 2010 .

[21]  D Contini,et al.  Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory. , 1997, Applied optics.

[22]  A. Bjarklev,et al.  Gas sensing using air-guiding photonic bandgap fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[23]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[24]  Ralph P. Tatam,et al.  Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres , 2010 .

[25]  Stefan Andersson-Engels,et al.  Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm. , 2009, The Review of scientific instruments.

[26]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[27]  S. Svanberg,et al.  VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids , 2008 .

[28]  S. Chernin,et al.  Optical multipass matrix systems. , 1991, Applied optics.

[29]  Rudy Peeters,et al.  Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy , 1998 .

[30]  John U. White Long Optical Paths of Large Aperture , 1942 .

[31]  Stefan Andersson-Engels,et al.  Optical porosimetry and investigations of the porosity experienced by light interacting with porous media. , 2010, Optics letters.

[32]  J. Destombes,et al.  Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere. , 1996, Applied optics.

[33]  Herwig Kogelnik,et al.  Off-Axis Paths in Spherical Mirror Interferometers , 1964 .

[34]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[35]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[36]  S Andersson-Engels,et al.  Analysis of gas dispersed in scattering media. , 2001, Optics letters.

[37]  Elfed Lewis,et al.  CO2 monitoring and detection using an integrating sphere as a multipass absorption cell , 2007 .

[38]  J. Lagemaat,et al.  Strongly photonic macroporous gallium phosphide networks , 1999, Science.