An adaptive empirical bayes estimator of the multivariate normal mean under quadratic loss

Abstract For shrinkage estimators to achieve significant risk improvement over their traditional competitors, one must identify the region or subspace where the unknown location vector lies or is thought likely to lie a priori . When vague or conflicting priors suggest that a broad class of estimators may be effective under a squared-error-loss measure, new minimax or near-minimax empirical Bayes estimators are proposed that make use of Stein's unbiased estimator of the risk to identify the optimum risk-effective shrinkage estimator.

[1]  L. Brown The Differential Inequality of a Statistical Estimation Problem , 1988 .

[2]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .

[3]  Shuning Chen Restricted risk Bayes estimation for the mean of the multivariate normal distribution , 1988 .

[4]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[5]  Estimation of Normal Means: Frequentist Estimation of Loss , 1989 .

[6]  E. George Minimax Multiple Shrinkage Estimation , 1986 .

[7]  Richard D. Porter,et al.  Further results on estimating linear regression models with partial prior information , 1988 .

[8]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[9]  G. Casella An Introduction to Empirical Bayes Data Analysis , 1985 .

[10]  J. Berger A Robust Generalized Bayes Estimator and Confidence Region for a Multivariate Normal Mean , 1980 .

[11]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[12]  George Casella,et al.  Minimax Ridge Regression Estimation , 1980 .

[13]  J. Berger Bayesian Robustness and the Stein Effect , 1982 .

[14]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[15]  P. Sen,et al.  EMPIRICAL BAYES SUBSET ESTIMATION IN REGRESSION MODELS , 1989 .

[16]  G. Judge,et al.  Statistical model selection criteria , 1988 .

[17]  M. Bock Shrinkage Estimators: Pseudo-Bayes Rules for Normal Mean Vectors , 1988 .

[18]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[19]  M. Bock Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1975 .

[20]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[21]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[22]  R. W. Farebrother,et al.  The statistical implications of pre-test and Stein-rule estimators in econometrics , 1978 .

[23]  J. Berger Admissible Minimax Estimation of a Multivariate Normal Mean with Arbitrary Quadratic Loss , 1976 .

[24]  James O. Berger,et al.  Bayesian input in Stein estimation and a new minimax empirical Bayes estimator , 1984 .

[25]  L. Brown On the Admissibility of Invariant Estimators of One or More Location Parameters , 1966 .

[26]  James O. Berger,et al.  Selecting a Minimax Estimator of a Multivariate Normal Mean , 1982 .

[27]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .