CLUES: A non-parametric clustering method based on local shrinking
暂无分享,去创建一个
[1] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[2] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[3] Robert Tibshirani,et al. Estimating the number of clusters in a data set via the gap statistic , 2000 .
[4] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[5] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[6] Hichem Frigui,et al. A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[7] Alan Agresti,et al. The Measurement of Classification Agreement: An Adjustment to the Rand Statistic for Chance Agreement , 1984 .
[8] Nancy E. Heckman,et al. Estimating and depicting the structure of a distribution of random functions , 2002 .
[9] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[10] Larry D. Hostetler,et al. The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.
[11] Paul S. Bradley,et al. Scaling Clustering Algorithms to Large Databases , 1998, KDD.
[12] Dorin Comaniciu,et al. Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[13] Peter J. Rousseeuw,et al. Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .
[14] R. Maronna,et al. Multivariate Clustering Procedures with Variable Metrics , 1974 .
[15] J. Wang,et al. VQ-agglomeration: a novel approach to clustering , 2001 .
[16] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[17] P. Groenen,et al. Data analysis, classification, and related methods , 2000 .
[18] Enrique H. Ruspini,et al. Numerical methods for fuzzy clustering , 1970, Inf. Sci..
[19] Ming-Yen Cheng,et al. Calibrating the excess mass and dip tests of modality , 1998 .
[20] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[21] André Hardy,et al. An examination of procedures for determining the number of clusters in a data set , 1994 .
[22] T. Caliński,et al. A dendrite method for cluster analysis , 1974 .
[23] Dorin Comaniciu,et al. The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.
[24] M. Rosenblatt,et al. Multivariate k-nearest neighbor density estimates , 1979 .
[25] Yoshiharu Sato,et al. An Autonomous Clustering Technique , 2000 .
[26] Yizong Cheng,et al. Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[27] G. W. Milligan,et al. A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis. , 1986, Multivariate behavioral research.
[28] Maurice K. Wong,et al. Algorithm AS136: A k-means clustering algorithm. , 1979 .
[29] Sukhamay Kundu,et al. Gravitational clustering: a new approach based on the spatial distribution of the points , 1999, Pattern Recognit..
[30] P. Hall,et al. Data sharpening as a prelude to density estimation , 1999 .
[31] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[32] Dorin Comaniciu,et al. Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[33] G. W. Milligan,et al. An examination of procedures for determining the number of clusters in a data set , 1985 .