Isotopic effect in the lattice parameter of rare-gas solids

The dependence of the lattice parameter of rare-gas (Lennard-Jones) solids on isotopic mass has been studied by the path-integral Monte Carlo method. Simulations were carried out in the isothermal–isobaric ensemble, which allows us to study this isotopic effect as a function of temperature and pressure. In the limit T → 0 and at ambient pressure, the difference Δa between lattice parameters of isotopically pure crystals with lightest and heaviest isotopic mass is found to range from 8.7 × 10−3 A for Ne to 1.2 × 10−3 A for Xe. This isotopic effect decreases appreciably upon increasing temperature. At 80 K, Δa for Ar, Kr and Xe is found to be less than one-third of the corresponding low-temperature value. An applied hydrostatic pressure also causes an important decrease in Δa. For Ne and Xe, a pressure of 30 kbar reduces this difference by a factor of 6.5 and 3.1, respectively. These differences in lattice parameter are larger than the sensitivity limit presently achieved in experimental studies, even for solid xenon at its Debye temperature.

[1]  Direct measurements and path integral Monte Carlo calculations of kinetic energies of solid neon , 1996 .

[2]  C. Herrero Isotopic effect on the lattice constant of silicon a quantum Monte Carlo simulation , 2000 .

[3]  G. K. Horton,et al.  Thermal and elastic properties of solid neon , 2000 .

[4]  M. Klein,et al.  A theoretical study of the lattice dynamics of neon and its isotopes , 1969 .

[5]  K. Singer,et al.  Path integral simulations of condensed phase Lennard-Jones systems , 1988 .

[6]  Gillan Quantum simulation of hydrogen in metals. , 1988, Physical review letters.

[7]  S. Sasaki,et al.  High-pressure elastic properties of solid argon to 70 GPa. , 2001, Physical review letters.

[8]  R. L. Gray,et al.  Thermodynamic Properties of Solid Argon and Krypton , 1973 .

[9]  C. Herrero Path-integral Monte Carlo study of amorphous silicon , 2000 .

[10]  Cardona,et al.  Isotopic effects on the lattice constant in compound semiconductors by perturbation theory: An ab initio calculation. , 1996, Physical review. B, Condensed matter.

[11]  C. Herrero Isotope effects in structural and thermodynamic properties of solid neon , 2001 .

[12]  David M. Ceperley,et al.  Microscopic Simulations in Physics , 1999 .

[13]  P. Granfors,et al.  Crystalline xenon: Lattice parameters, thermal expansion, thermal vacancies, and equation of state , 1981 .

[14]  G. Mitchell,et al.  Average kinetic energy of atoms in a solid measured with resonant nuclear reactions , 1998 .

[15]  M. Klein,et al.  Isotopic shift in the melting curve of helium: A path integral Monte Carlo study , 1989 .

[16]  K. Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[17]  K. Asaumi High-pressure x-ray diffraction study of solid xenon and its equation of state in relation to metallization transition , 1984 .

[18]  R. W. Hall,et al.  A Path Integral Monte Carlo Study of Liquid Neon and the Quantum Effective Pair Potential , 1984 .

[19]  L. H. Nosanow,et al.  HARTREE CALCULATIONS FOR THE GROUND STATE OF SOLID He AND OTHER NOBLE GAS CRYSTALS , 1962 .

[20]  J. Feldman,et al.  Thermodynamic Properties of Solid Ar, Kr, and Xe Based Upon a Short-Range Central Force and the Conventional Perturbation Expansion of the Partition Function , 1969 .

[21]  Horton,et al.  Improved effective-potential Monte Carlo theory. , 1995, Physical review letters.

[22]  Giachetti,et al.  Quantum corrections to the thermodynamics of nonlinear systems. , 1986, Physical review. B, Condensed matter.

[23]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[24]  S. Baroni,et al.  Dependence of the crystal lattice constant on isotopic composition: Theory and ab initio calculations for C, Si, and Ge , 1994 .

[25]  G. Dienes,et al.  Self-consistent-average-phonon equation of state. II. Comparison with solid-rare-gas experiments , 1982 .

[26]  Ceperley,et al.  Isotopic shift of helium melting pressure: Path integral Monte Carlo study. , 1994, Physical review letters.

[27]  Rafael Ramírez,et al.  Structural and thermodynamic properties of diamond: A path-integral Monte Carlo study , 2000 .

[28]  M. Klein,et al.  An Improved Self-Consistent Phonon Approximation , 1968 .

[29]  M. Ross,et al.  Phase behavior of krypton and xenon to 50 GPa , 2002 .

[30]  Nobuhiko Saitô,et al.  Statistical Physics I : Equilibrium Statistical Mechanics , 1983 .

[31]  J. Brown,et al.  Isotopic differences in the 0 °K volume and sublimation energies of solid neon and argon , 1966 .

[32]  M. Konuma,et al.  X-ray standing wave analysis of the effect of isotopic composition on the lattice constants of Si and Ge. , 2001, Physical review letters.

[33]  Macchi,et al.  Quantum thermodynamics of solids by means of an effective potential. , 1992, Physical review. B, Condensed matter.

[34]  Ramírez,et al.  Thermodynamic properties of c-Si derived by quantum path-integral Monte Carlo simulations. , 1996, Physical review. B, Condensed matter.

[35]  Binder,et al.  Path-integral Monte Carlo study of crystalline Lennard-Jones systems. , 1995, Physical review. B, Condensed matter.

[36]  C. Herrero Dependence of the silicon lattice constant on isotopic mass , 1999 .

[37]  D. Losee,et al.  ISOTOPE EFFECTS IN THE LATTICE CONSTANT AND THERMAL EXPANSION OF $sup 20$Ne AND $sup 22$Ne SINGLE CRYSTALS. , 1968 .

[38]  R. Feynman,et al.  Effective classical partition functions. , 1986, Physical review. A, General physics.

[39]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[40]  Zegenhagen,et al.  Isotopic mass and lattice constant: X-ray standing wave measurements , 1998, Science.

[41]  G. Pollack The Solid State of Rare Gases , 1964 .

[42]  M. Scheffler,et al.  The influence of the isotopic composition on the thermal expansion of crystalline Si , 1994 .

[43]  M. Cardona Isotopic Effects in the Phonon and Electron Dispersion Relations of Crystals , 2000 .

[44]  Macchi,et al.  Monte Carlo computations of the quantum kinetic energy of rare-gas solids. , 1993, Physical review. B, Condensed matter.

[45]  C. Herrero,et al.  ISOTOPE DEPENDENCE OF THE LATTICE PARAMETER OF GERMANIUM FROM PATH-INTEGRAL MONTE CARLO SIMULATIONS , 1997 .

[46]  J. D. Boer Quantum theory of condensed permanent gases I the law of corresponding states , 1948 .

[47]  Charusita Chakravarty,et al.  Path integral simulations of quantum Lennard-Jones solids , 2002 .

[48]  D. Losee,et al.  Thermal-Expansion Measurements and Thermodynamics of Solid Krypton , 1968 .

[49]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .