State and sensor faults estimation via a proportional integral observer

This paper deals with the problem of fault detection and identification in noisy systems. A proportionnal integral observer with unknown inputs is used to reconstruct state and sensors faults. A mathematical transformation is made to conceive an augmented system, in which the initial sensor fault appear as an unknown input. The noise effect on the state and fault estimation errors is also minimized. The obtained results are then extended to nonlinear systems described by nonlinear Takagi-Sugeno models.

[1]  D. Luenberger An introduction to observers , 1971 .

[2]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[3]  V. Utkin Principles of identification using sliding regimes , 1981 .

[4]  S. Żak,et al.  Observation of dynamical systems in the presence of bounded nonlinearities/uncertainties , 1986, 1986 25th IEEE Conference on Decision and Control.

[5]  M. Saif,et al.  A novel approach to the design of unknown input observers , 1991 .

[6]  S. Spurgeon,et al.  On the development of discontinuous observers , 1994 .

[7]  Sarah K. Spurgeon,et al.  Sliding mode observers for fault detection and isolation , 2000, Autom..

[8]  Rainer Palm,et al.  Observers for Takagi-Sugeno fuzzy systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Chee Pin Tan,et al.  Sliding mode observers for fault detection and isolation , 2002 .

[10]  Rahul Sharma,et al.  Estimation of unknown disturbances in nonlinear systems , 2004 .

[11]  Christopher Edwards,et al.  A comparison of sliding mode and unknown input observers for fault reconstruction , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[12]  D. Maquin,et al.  Conception de multi-observateurs à variables de décision non mesurables , 2007 .

[13]  J. Ragot,et al.  Design of sliding mode unknown input observer for uncertain Takagi-Sugeno model , 2007, 2007 Mediterranean Conference on Control & Automation.

[14]  Kamel Benothman,et al.  State and unknown input estimation via a proportional integral observer , 2008 .

[15]  Ke Zhang,et al.  Adaptive Observer-based Fast Fault Estimation , 2008 .