Optimisation of cancer drug treatments using cell population dynamics

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Optimisation of cancer drug treatments using cell population dynamics Frédérique Billy, Jean Clairambault, Olivier Fercoq

[1]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[2]  Thomas B. L. Kirkwood,et al.  Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’ , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Stéphane Gaubert,et al.  Synchronisation and control of proliferation in cycling cell population models with age structure , 2014, Math. Comput. Simul..

[4]  K. Aziz,et al.  Molecular markers for cancer prognosis and treatment: have we struck gold? , 2012, Cancer letters.

[5]  Marie Doumic,et al.  Nonparametric Estimation of the Division Rate of a Size-Structured Population , 2011, SIAM J. Numer. Anal..

[6]  W. Marsden I and J , 2012 .

[7]  Karyn L. Sutton,et al.  A new model for the estimation of cell proliferation dynamics using CFSE data. , 2011, Journal of immunological methods.

[8]  S. Gaubert,et al.  Proliferation in Cell Population Models with Age Structure , 2011 .

[9]  Annabelle Ballesta,et al.  A Combined Experimental and Mathematical Approach for Molecular-based Optimization of Irinotecan Circadian Delivery , 2011, PLoS Comput. Biol..

[10]  Annabelle Ballesta,et al.  Theoretical optimization of Irinotecan-based anticancer strategies in the case of drug-induced efflux , 2011, Appl. Math. Lett..

[11]  Urszula Ledzewicz,et al.  Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. , 2011, Mathematical biosciences and engineering : MBE.

[12]  Benoît You,et al.  A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers. , 2011, European journal of cancer.

[13]  Stéphane Gaubert,et al.  Circadian rhythm and cell population growth , 2010, Math. Comput. Model..

[14]  Albert Goldbeter,et al.  An automaton model for the cell cycle , 2011, Interface Focus.

[15]  Gabriela Ochoa,et al.  Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy , 2010, Artif. Intell. Medicine.

[16]  S. Tejpar,et al.  New Strategies for Treatment of KRAS Mutant Metastatic Colorectal Cancer , 2010, Clinical Cancer Research.

[17]  Samuel Bernard,et al.  Tumor Growth Rate Determines the Timing of Optimal Chronomodulated Treatment Schedules , 2010, PLoS Comput. Biol..

[18]  Jean Clairambault,et al.  Circadian timing in cancer treatments. , 2010, Annual review of pharmacology and toxicology.

[19]  D. Bresch,et al.  Computational Modeling of Solid Tumor Growth: The Avascular Stage , 2010, SIAM J. Sci. Comput..

[20]  On the Calibration of a Size-Structured Population Model from Experimental Data , 2009, Acta biotheoretica.

[21]  H. Schättler,et al.  On optimal delivery of combination therapy for tumors. , 2009, Mathematical biosciences.

[22]  Didier Bresch,et al.  A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. , 2009, Journal of theoretical biology.

[23]  Paolo Ubezio,et al.  Quantitative assessment of the complex dynamics of G1, S, and G2-M checkpoint activities. , 2009, Cancer research.

[24]  R. Gatenby A change of strategy in the war on cancer , 2009, Nature.

[25]  Mauro Ferrari,et al.  Prediction of drug response in breast cancer using integrative experimental/computational modeling. , 2009, Cancer research.

[26]  Assia Benabdallah,et al.  Mathematical and numerical analysis for a model of growing metastatic tumors. , 2009, Mathematical biosciences.

[27]  Albert Goldbeter,et al.  Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[28]  Jean Clairambault,et al.  Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models , 2008, 0812.0803.

[29]  Alberto Gandolfi,et al.  A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. , 2008, Mathematical medicine and biology : a journal of the IMA.

[30]  Jorge P. Zubelli,et al.  Numerical solution of an inverse problem in size-structured population dynamics , 2008, 0810.1381.

[31]  M. Ferrari,et al.  Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation , 2006, Journal of mathematical biology.

[32]  B. Frieden,et al.  Adaptive therapy. , 2009, Cancer research.

[33]  Jean Clairambault,et al.  Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments , 2009 .

[34]  Didier Bresch,et al.  A viscoelastic model for avascular tumor growth , 2009 .

[35]  Atsushi Miyawaki,et al.  Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. , 2008, Chemistry & biology.

[36]  Albert Goldbeter,et al.  Implications of circadian clocks for the rhythmic delivery of cancer therapeutics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Jean Clairambault,et al.  An age-and-cyclin-structured cell population model for healthy and tumoral tissues , 2008, Journal of mathematical biology.

[38]  Jean Clairambault,et al.  A Step Toward Optimization of Cancer Therapeutics , 2008 .

[39]  J. Clairambault A step toward optimization of cancer therapeutics. Physiologically based modeling of circadian control on cell proliferation. , 2008, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[40]  Efstratios N. Pistikopoulos,et al.  Optimal delivery of chemotherapeutic agents in cancer , 2008, Comput. Chem. Eng..

[41]  T. Haferlach Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. , 2008, Hematology. American Society of Hematology. Education Program.

[42]  Alberto d'Onofrio,et al.  Rapidly acting antitumoral antiangiogenic therapies. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Akif Uzman,et al.  The cell cycle: Principles of control (Primers in Biology series) , 2007 .

[44]  M. Crosby,et al.  Cell Cycle: Principles of Control , 2007, The Yale Journal of Biology and Medicine.

[45]  Jean Clairambault,et al.  Modeling oxaliplatin drug delivery to circadian rhythms in drug metabolism and host tolerance. , 2007, Advanced drug delivery reviews.

[46]  Albert Goldbeter,et al.  A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. , 2007, Advanced drug delivery reviews.

[47]  M Kardar,et al.  Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies , 2007, Physics in medicine and biology.

[48]  Glenn F Webb,et al.  A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor , 2007, Theoretical Biology and Medical Modelling.

[49]  Urszula Ledzewicz,et al.  Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy. , 2007, Mathematical biosciences.

[50]  Paolo Ubezio,et al.  A Generalised Age- and Phase-Structured Model of Human Tumour Cell Populations Both Unperturbed and Exposed to a Range of Cancer Therapies , 2007, Bulletin of mathematical biology.

[51]  H. Kitano A robustness-based approach to systems-oriented drug design , 2007, Nature Reviews Drug Discovery.

[52]  Ueli Schibler,et al.  Circadian rhythms: mechanisms and therapeutic implications. , 2007, Annual review of pharmacology and toxicology.

[53]  B. Perthame,et al.  On the inverse problem for a size-structured population model , 2006, math/0611052.

[54]  A. Goldbeter,et al.  Optimizing Temporal Patterns of Anticancer Drug Delivery by Simulations of a Cell Cycle Automaton , 2007 .

[55]  B Ribba,et al.  A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. , 2006, Journal of theoretical biology.

[56]  B. Perthame Transport Equations in Biology , 2006 .

[57]  Refael Hassin,et al.  Optimizing Chemotherapy Scheduling Using Local Search Heuristics , 2006, Oper. Res..

[58]  Alessandro Torricelli,et al.  Modelling the balance between quiescence and cell death in normal and tumour cell populations. , 2006, Mathematical biosciences.

[59]  Z. Agur,et al.  LONG-RANGE PREDICTABILITY IN MODELS OF CELL POPULATIONS SUBJECTED TO PHASE-SPECIFIC DRUGS: GROWTH-RATE APPROXIMATION USING PROPERTIES OF POSITIVE COMPACT OPERATORS , 2006 .

[60]  P. Maini,et al.  Modelling aspects of cancer dynamics: a review , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Helen M. Byrne,et al.  Modelling the response of spatially structured tumours to chemotherapy: Drug kinetics , 2006, Math. Comput. Model..

[62]  W. Evans,et al.  Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells , 2005, British Journal of Cancer.

[63]  Andrzej Swierniak,et al.  Control Theory Approach to Cancer Chemotherapy: Benefiting from Phase Dependence and Overcoming Drug Resistance , 2006 .

[64]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[65]  F. Lévi,et al.  The circadian timing system, a coordinator of life processes. implications for the rhythmic delivery of cancer therapeutics , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[66]  Francis Lévi,et al.  Chronotherapeutics: The Relevance of Timing in Cancer Therapy , 2006, Cancer Causes & Control.

[67]  Paolo Ubezio,et al.  Interpreting cell cycle effects of drugs: the case of melphalan , 2006, Cancer Chemotherapy and Pharmacology.

[68]  Claude Basdevant,et al.  Optimisation of time-scheduled regimen for anti-cancer drug infusion , 2005 .

[69]  Graeme C. Wake,et al.  Modelling the flow cytometric data obtained from unperturbed human tumour cell lines: Parameter fitting and comparison , 2005 .

[70]  H. Maurer,et al.  Optimization methods for the verification of second order sufficient conditions for bang–bang controls , 2005 .

[71]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[72]  Helen M. Byrne,et al.  A Multiple Scale Model for Tumor Growth , 2005, Multiscale Model. Simul..

[73]  Alberto Gandolfi,et al.  Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). , 2004, Mathematical biosciences.

[74]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[75]  Armando Santoro,et al.  Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. , 2004, The New England journal of medicine.

[76]  Ping Chen,et al.  Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor , 2004, Science.

[77]  Britta Basse,et al.  Modelling cell population growth with applications to cancer therapy in human tumour cell lines. , 2004, Progress in biophysics and molecular biology.

[78]  Paolo Ubezio,et al.  Cytostatic and cytotoxic effects of topotecan decoded by a novel mathematical simulation approach. , 2004, Cancer research.

[79]  H. Kitano Cancer as a robust system: implications for anticancer therapy , 2004, Nature Reviews Cancer.

[80]  Graeme Wake,et al.  Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel , 2004, Journal of mathematical biology.

[81]  John Carl Panetta,et al.  A mechanistic mathematical model of temozolomide myelosuppression in children with high-grade gliomas. , 2003, Mathematical biosciences.

[82]  Graeme Wake,et al.  A mathematical model for analysis of the cell cycle in cell lines derived from human tumors , 2003, Journal of mathematical biology.

[83]  L. Wein,et al.  Optimal scheduling of radiotherapy and angiogenic inhibitors , 2003, Bulletin of mathematical biology.

[84]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[85]  Trachette L. Jackson,et al.  Intracellular accumulation and mechanism of action of doxorubicin in a spatio-temporal tumor model. , 2003, Journal of theoretical biology.

[86]  Jean Clairambault,et al.  A mathematical model of the cell cycle and its control , 2003 .

[87]  Mats Gyllenberg,et al.  The inverse problem of linear age-structured population dynamics , 2002 .

[88]  Robert A. Gatenby,et al.  Analysis of tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy , 2002, Appl. Math. Lett..

[89]  J. Murray,et al.  Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy , 2002, British Journal of Cancer.

[90]  J. Murray,et al.  Quantifying Efficacy of Chemotherapy of Brain Tumors with Homogeneous and Heterogeneous Drug Delivery , 2002, Acta biotheoretica.

[91]  B. Druker,et al.  STI571: a paradigm of new agents for cancer therapeutics. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[92]  Dominique Barbolosi,et al.  Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK-PD model , 2001, Comput. Biol. Medicine.

[93]  C. Sawyers,et al.  Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. , 2001, The New England journal of medicine.

[94]  S G Grant,et al.  A mathematical model of in vitro cancer cell growth and treatment with the antimitotic agent curacin A. , 2001, Mathematical biosciences.

[95]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[96]  J. Murray,et al.  A quantitative model for differential motility of gliomas in grey and white matter , 2000, Cell proliferation.

[97]  Dominique Barbolosi,et al.  Optimizing Drug Regimens in Cancer Chemotherapy by an Efficacy-Toxicity Mathematical Model , 2000, Comput. Biomed. Res..

[98]  N. Shigesada,et al.  A dynamical model for the growth and size distribution of multiple metastatic tumors. , 2000, Journal of theoretical biology.

[99]  H M Byrne,et al.  A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. , 2000, Mathematical biosciences.

[100]  John Carl Panetta,et al.  Optimal Control Applied to Cell-Cycle-Specific Cancer Chemotherapy , 2000, SIAM J. Appl. Math..

[101]  P. Hahnfeldt,et al.  Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. , 1999, Cancer research.

[102]  Francis Levi Cancer chronotherapeutics , 1998 .

[103]  Paolo Ubezio,et al.  Simulating cancer-cell kinetics after drug treatment: Application to cisplatin on ovarian carcinoma , 1998 .

[104]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[105]  J. M. Murray,et al.  The optimal scheduling of two drugs with simple resistance for a problem in cancer chemotherapy. , 1997, IMA journal of mathematics applied in medicine and biology.

[106]  J C Panetta,et al.  A mathematical model of breast and ovarian cancer treated with paclitaxel. , 1997, Mathematical biosciences.

[107]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[108]  O. Arino,et al.  A Survey of Cell Population Dynamics , 1997 .

[109]  E. T. Gawlinski,et al.  A reaction-diffusion model of cancer invasion. , 1996, Cancer research.

[110]  A Swierniak,et al.  Optimal control problems arising in cell‐cycle‐specific cancer chemotherapy , 1996, Cell proliferation.

[111]  H M Byrne,et al.  Growth of necrotic tumors in the presence and absence of inhibitors. , 1996, Mathematical biosciences.

[112]  H M Byrne,et al.  Growth of nonnecrotic tumors in the presence and absence of inhibitors. , 1995, Mathematical biosciences.

[113]  Ovide Arino,et al.  A survey of structured cell population dynamics , 1995, Acta biotheoretica.

[114]  F L Pereira,et al.  A new optimization based approach to experimental combination chemotherapy. , 1995, Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering.

[115]  Marek Kimmel,et al.  Comparison of Approaches to Modeling of Cell Population Dynamics , 1993, SIAM J. Appl. Math..

[116]  R. B. Martin,et al.  Optimal control drug scheduling of cancer chemotherapy , 1992, Autom..

[117]  M E Fisher,et al.  Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy. , 1992, Mathematical biosciences.

[118]  M E Fisher,et al.  Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells. , 1992, Mathematical biosciences.

[119]  G. F. Webb,et al.  A NONLINEAR CELL POPULATION MODEL OF PERIODIC CHEMOTHERAPY TREATMENT , 1992 .

[120]  G. F. Webb,et al.  Resonance phenomena in cell population chemotherapy models , 1990 .

[121]  J. M. Murray,et al.  Some optimal control problems in cancer chemotherapy with a toxicity limit. , 1990, Mathematical biosciences.

[122]  J. M. Murray,et al.  Optimal control for a cancer chemotherapy problem with general growth and loss functions. , 1990, Mathematical biosciences.

[123]  G. Webb,et al.  A nonlinear structured population model of tumor growth with quiescence , 1990, Journal of mathematical biology.

[124]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[125]  S. Bittanti,et al.  Optimal periodic control and periodic systems analysis: An overview , 1986, 1986 25th IEEE Conference on Decision and Control.

[126]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[127]  P. J. Ponzo,et al.  A model for the growth of a solid tumor with non-uniform oxygen consumption , 1977 .

[128]  R. Shymko,et al.  Cellular and geometric control of tissue growth and mitotic instability. , 1976, Journal of theoretical biology.

[129]  A S Deakin,et al.  Model for the growth of a solid in vitro tumor. , 1975, Growth.

[130]  H. Greenspan Models for the Growth of a Solid Tumor by Diffusion , 1972 .

[131]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[132]  A. K. Laird Dynamics of Tumour Growth , 1964, British Journal of Cancer.

[133]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[134]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[135]  Kendrick,et al.  Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[136]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .