On an extension of homogeneity notion for differential inclusions

The notion of geometric homogeneity is extended for differential inclusions. This kind of homogeneity provides the most advanced coordinate-free framework for analysis and synthesis of nonlinear discontinuous systems. Theorem of L. Rosier [1] on a homogeneous Lyapunov function existence for homogeneous differential inclusions is presented. An extension of the result of Bhat and Bernstein [2] about the global asymptotic stability of a system admitting a strictly positively invariant compact set is also proved.

[1]  Nami Nakamura,et al.  Homogeneous stabilization for input-affine homogeneous systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[2]  L. Praly,et al.  Generalized weighted homogeneity and state dependent time scale for linear controllable systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  Y. ORLOV,et al.  Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems , 2004, SIAM J. Control. Optim..

[4]  Arie Levant,et al.  Homogeneity approach to high-order sliding mode design , 2005, Autom..

[5]  Paulo Tabuada,et al.  To Sample or not to Sample: Self-Triggered Control for Nonlinear Systems , 2008, IEEE Transactions on Automatic Control.

[6]  L. Grüne Homogeneous state feedback stabilization of homogeneous systems , 2000, CDC.

[7]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[8]  Matthias Kawski,et al.  Chronological Algebras: Combinatorics and Control , 2001 .

[9]  Denis V. Efimov,et al.  Oscillating system design applying universal formula for control , 2011, IEEE Conference on Decision and Control and European Control Conference.

[10]  Willie L. Roberts,et al.  On systems of ordinary differential equations , 1961 .

[11]  Henry Hermes,et al.  Large and small time local controllability , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[13]  M. Kawski GEOMETRIC HOMOGENEITY AND STABILIZATION , 1995 .

[14]  Matthias Kawski,et al.  Homogeneous Feedback Stabilization , 1991 .

[15]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[16]  H. Hermes Homogeneous feedback controls for homogeneous systems , 1995 .

[17]  L. Rosier Etude de quelques problèmes de stabilisation , 1993 .

[18]  R. Outbib,et al.  Global stabilization of planar homogeneous polynomial systems , 1998 .

[19]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[20]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[21]  W. Perruquetti,et al.  Robustness of finite-time stability property for sliding modes , 2013 .

[22]  Henry Hermes,et al.  Nilpotent and High-Order Approximations of Vector Field Systems , 1991, SIAM Rev..

[23]  M. Kawski Nilpotent Lie algebras of vectorfields. , 1988 .

[24]  G. Smirnov Introduction to the Theory of Differential Inclusions , 2002 .

[25]  Alessandro Astolfi,et al.  Homogeneous Approximation, Recursive Observer Design, and Output Feedback , 2008, SIAM J. Control. Optim..

[26]  W. Perruquetti,et al.  Oscillations Conditions in Homogenous Systems , 2010 .

[27]  Wolfgang Hahn,et al.  Theory and Application of Liapunov's Direct Method , 1963 .

[28]  Andrey Polyakov,et al.  On settling time function and stability of vector relay systems , 2012, 2012 12th International Workshop on Variable Structure Systems.

[29]  H. Hermes Nilpotent approximations of control systems and distributions , 1986 .

[30]  Matthias Kawski,et al.  Nonlinear Control and Combinatorics of Words , 1997 .

[31]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[32]  R. Sepulchre,et al.  Stabilizability Does Not Imply Homogeneous Stabilizability for Controllable Homogeneous Systems , 1996 .

[33]  M. Kawski Homogeneous Stabilizing Feedback Laws , 1990 .