An Iterative Technique for Determining the Minimal Number of Variables for a Totally Symmetric Function with Repeated Variables

Several analytic procedures exist for transforming a partially symmetric switching function to a totally symmetric switching function by judiciously repeating certain variables. Presumably the best totally symmetric representation for a given function would be the one having the fewest variables. This note presents an iterative technique for finding the totally symmetric realization for a given function that has the absolute minimum number of variables.