Optimal Control and Design of Bipedal Robots with ComplianceOptimale Steuerung und Auslegung zweibeiniger Laufroboter mit elastischen Gelenken

Abstract The purpose of this paper is to present an interesting area of appplication for modern optimal control techniques in robotics. Optimal control can significantly improve the control of bipedal walking motions, in particular by an optimal exploitation and an appropriate tuning of compliance. Two optimization methods for gait generation and three bipedal robot models are used to highlight three aspects: optimally tuned elastic elements significantly reduce energy consumption for locomotion, produce natural-looking gaits, and enhance the open-loop stability of the gait. It is concluded that optimization of compliance in legged robots is a promising approach towards dynamic, energy-efficient locomotion.

[1]  Christine Chevallereau,et al.  Energetic Effects of Adding Springs at the Passive Ankles of a Walking Biped Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  Martin Buss,et al.  Compliance in gait synthesis: Effects on energy and gait , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[3]  Richard W. Longman,et al.  Optimizing Spring-Damper Design in Human Like Walking that is Asymptotically Stable Without Feedback , 2006, HPSC.

[4]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[5]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[6]  Yannick Aoustin,et al.  Optimal reference trajectories for walking and running of a biped robot , 2001, Robotica.

[7]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[8]  Fumiya Iida,et al.  Bipedal Walking and Running with Compliant Legs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[9]  Katja D. Mombaur,et al.  Using optimization to create self-stable human-like running , 2009, Robotica.

[10]  Martin Buss,et al.  Locomotion studies for a 5DoF gymnastic robot , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Frederick C. Corey,et al.  Alexander , 1997, The Reign of Leo VI (886-912).

[12]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[13]  J. P. Schmiedeler,et al.  Using Parallel Joint Compliance to Reduce the Cost of Walking in a Planar Bipedal Robot , 2007 .

[14]  Manoj Srinivasan,et al.  Computer optimization of a minimal biped model discovers walking and running , 2006, Nature.

[15]  Andy Ruina,et al.  A Bipedal Walking Robot with Efficient and Human-Like Gait , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[16]  Stefano Stramigioli,et al.  Optimization of Mass and Stiffness Distribution for Efficient Bipedal Walking , 2005 .

[17]  Martijn Wisse,et al.  System overview of bipedal robots Flame and TUlip: Tailor-made for Limit Cycle Walking , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Friedrich Pfeiffer,et al.  Computer system and control of biped "Johnnie" , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[19]  Eadweard Muybridge The Male and Female Figure in Motion: 60 Classic Photographic Sequences , 1984 .

[20]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[21]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[22]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[23]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[24]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[25]  Bram Vanderborght,et al.  Exploiting Natural Dynamics to Reduce Energy Consumption by Controlling the Compliance of Soft Actuators , 2006, Int. J. Robotics Res..

[26]  Oskar von Stryk,et al.  INCREASING STABILITY IN DYNAMIC GAITS USING NUMERICAL OPTIMIZATION , 2002 .

[27]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[28]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[29]  R. M. Alexander Energy-saving mechanisms in walking and running. , 1991, The Journal of experimental biology.