Hydrogen Production Using Pd-based Membrane Reactors for Fuel Cells

In this review, recent progress on palladium-based membrane reactors (MRs) is outlined concentrating on the production of pure hydrogen. Various aspects are presented concerning some dehydrogenation reactions as well as an analysis of the palladium based membranes under study and the governing equations. Some critical aspects of non-palladium based membranes are presented. Moreover, some problems related to the effect of contamination of the Pd-based membranes and to the H2 flux are introduced; the long-term durability problems of inorganic MRs are also discussed.

[1]  J. Fierro,et al.  Oxidative Methanol Reforming Reactions on CuZnAl Catalysts Derived from Hydrotalcite-like Precursors , 2001 .

[2]  Y. Murakoshi,et al.  Hydrogen permeation characteristics of thin Pd membrane prepared by microfabrication technology , 2006 .

[3]  X. Verykios,et al.  Reforming reactions of acetic acid on nickel catalysts over a wide temperature range , 2006 .

[4]  David Farrusseng,et al.  Porous ceramic membranes for catalytic reactors — overview and new ideas , 2001 .

[5]  N. Itoh,et al.  Selective dehydrogenation of unsaturated alcohols and hydrogen separation with a palladium membrane reactor , 2007 .

[6]  Henrik Birgersson,et al.  Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst : a kinetic analysis and strategies for suppression of CO formation , 2002 .

[7]  João C. Diniz da Costa,et al.  Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction , 2003 .

[8]  Kang Li Ceramic Membranes for Separation and Reaction: Li/Ceramic Membranes for Separation and Reaction , 2007 .

[9]  R. H. Williams,et al.  Inorganic membranes for hydrogen production and purification: a critical review and perspective. , 2007, Journal of colloid and interface science.

[10]  R. Maeda,et al.  Microfabricated Pd and Pd–25Ag alloy membranes , 2007 .

[11]  E. Drioli,et al.  Co-current and counter-current modes for methanol steam reforming membrane reactor: Experimental study , 2006 .

[12]  Enrico Drioli,et al.  An economic feasibility study for water gas shift membrane reactor , 2001 .

[13]  William J. Koros,et al.  Membrane-based gas separation , 1993 .

[14]  Bernard P. A. Grandjean,et al.  Methane steam reforming in asymmetric Pd- and Pd-Ag/porous SS membrane reactors , 1994 .

[15]  A. Seidel-Morgenstern,et al.  Compatibility of hydrogen transfer via Pd-membranes with the rates of heterogeneously catalysed steam reforming , 2005 .

[16]  E. Kikuchi Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reactor , 1995 .

[17]  Alírio E. Rodrigues,et al.  Insight into steam reforming of ethanol to produce hydrogen for fuel cells , 2006 .

[18]  K. Ishikawa,et al.  High hydrogen permeability in the Nb-rich Nb–Ti–Ni alloy , 2006 .

[19]  T. Akita,et al.  Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction , 2005 .

[20]  Xenophon E. Verykios,et al.  Catalytic steam reforming of acetic acid for hydrogen production , 2007 .

[21]  J. Tong,et al.  Pure hydrogen production by methane steam reforming with hydrogen-permeable membrane reactor , 2006 .

[22]  Francesca Sarto,et al.  Sputtered, electroless, and rolled palladium–ceramic membranes , 2002 .

[23]  S. Oyama,et al.  High Molecular Permeance in a Poreless Ceramic Membrane , 2007 .

[24]  Enrico Drioli,et al.  Methanol and ethanol steam reforming in membrane reactors : an experimental study , 2007 .

[25]  R. Hughes,et al.  The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes , 2002 .

[26]  Jesus Santamaria,et al.  Catalytic reactors based on porous ceramic membranes , 1999 .

[27]  T. Matsuda,et al.  Hydrogen Production from Methane Steam Reforming Assisted by Use of Membrane Reactor , 1991 .

[28]  Hengyong Xu,et al.  Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes , 2006 .

[29]  Robert A Dagle,et al.  Methanol steam reforming for hydrogen production. , 2007, Chemical reviews.

[30]  J. Way,et al.  INNOVATIONS IN PALLADIUM MEMBRANE RESEARCH , 2002 .

[31]  Fausto Gallucci,et al.  Pd-Ag tubular membrane reactors for methane dry reforming : a reactive method for CO2 consumption and H2 production , 2008 .

[32]  N. Itoh,et al.  Permeability of hydrogen in amorphous Pd(1−x)Six alloys at elevated temperatures , 1998 .

[33]  Jens R. Rostrup-Nielsen,et al.  CO2-Reforming of Methane over Transition Metals , 1993 .

[34]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network , 1999 .

[35]  E. Drioli,et al.  Membrane reactor for water gas shift reaction , 1996 .

[36]  John P. Collins,et al.  Catalytic decomposition of ammonia in a membrane reactor , 1994 .

[37]  Sang-Eon Park,et al.  Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts , 1996 .

[38]  J. C. Amphlett,et al.  Hydrogen production by the catalytic steam reforming of methanol part 1: The thermodynamics , 1981 .

[39]  J. Santamaría,et al.  State-of-the-Art in Zeolite Membrane Reactors , 2004 .

[40]  Mark S. Wainwright,et al.  KINETIC MECHANISM FOR THE REACTION BETWEEN METHANOL AND WATER OVER A CU-ZNO-AL2O3 CATALYST , 1993 .

[41]  N. Itoh,et al.  Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity , 2005 .

[42]  Koich Sato,et al.  Direct hydroxylation of aromatic compounds by a palladium membrane reactor , 2005 .

[43]  J.A.M. Kuipers,et al.  Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation , 2007 .

[44]  N. Sato,et al.  Membrane Reactor Using Microporous Glass-supported Thin Film of Palladium. Application to the Water Gas Shift Reaction , 1989 .

[45]  A. Basile,et al.  An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas , 2001 .

[46]  E. Drioli,et al.  Membrane separation technologies: their application to the fusion reactor fuel cycle , 1993 .

[47]  R. Hughes,et al.  The effect of diffusion direction on the permeation rate of hydrogen in palladium composite membranes , 2005 .

[48]  M. Harold,et al.  Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes , 2007 .

[49]  Sun-Tak Hwang,et al.  Inorganic membranes and membrane reactors , 2001, Korean Journal of Chemical Engineering.

[50]  F. A. Lewis,et al.  The Palladium-Hydrogen System , 1967, Platinum Metals Review.

[51]  Randolph Norris Shreve,et al.  Shreve's Chemical process industries , 1984 .

[52]  Fausto Gallucci,et al.  A dense Pd/Ag membrane reactor for methanol steam reforming : Experimental study , 2005 .

[53]  G. V. Gibbs,et al.  Activation energies for permeation of He and H2 through silica membranes: An ab initio calculation study , 2008 .

[54]  Shigeyuki Uemiya,et al.  Brief Review of Steam Reforming Using a Metal Membrane Reactor , 2004 .

[55]  Jens R. Rostrup-Nielsen,et al.  Catalysis and large-scale conversion of natural gas , 1994 .

[56]  Claude Mirodatos,et al.  Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors. Part I: a modeling approach , 1998 .

[57]  Walter E. Lobo Chemical Process Industries, Third Edition, R. Norris Shreve, McGraw‐Hill Book Company, New York (1967). $18.50. , 1968 .

[58]  E. Drioli,et al.  HIGH TEMPERATURE MEMBRANE REACTORS AND INTEGRATED MEMBRANE OPERATIONS , 2002 .

[59]  Kenzi Suzuki,et al.  Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts , 2001 .

[60]  R. Hughes Composite palladium membranes for catalytic membrane reactors , 2001 .

[61]  R. Bhave,et al.  Inorganic membranes : synthesis, characteristics, and applications , 1991 .

[62]  V. Violante,et al.  Pd-Ag Membrane Reactors for Water Gas Shift Reaction , 2003 .

[63]  A. Inoue,et al.  Hydrogen Permeation Characteristics of Melt-Spun Ni-Nb-Zr Amorphous Alloy Membranes , 2001 .

[64]  R. Dittmeyer,et al.  A Review of Catalytic Membrane Layers for Gas/Liquid Reactions , 2004 .

[65]  J. Dalmon,et al.  Comparison of microporous MFI and dense Pd membrane performances in an extractor-type CMR. , 2003 .

[66]  Fausto Gallucci,et al.  Experimental study of the methane steam reforming reaction in a dense Pd/Ag membrane reactor , 2004 .

[67]  T. Flanagan,et al.  Permeation of hydrogen through pre-oxidized Pd membranes in the presence and absence of CO , 2004 .

[68]  V. Gryaznov,et al.  Conversion of cyclohexene on a gold-plated palladium-nickel membrane catalyst , 1977 .

[69]  A. B. Vandyshev,et al.  Model for Processing and Analysis of Stationary Hydrogen-Permeability Isotherms of Palladium Alloy Membranes , 2003 .

[70]  Fausto Gallucci,et al.  A simulation study of the steam reforming of methane in a dense tubular membrane reactor , 2004 .

[71]  Xun Hu,et al.  Investigation of steam reforming of acetic acid to hydrogen over Ni–Co metal catalyst , 2007 .

[72]  Geert Versteeg,et al.  Current hurdles to the success of high temperature membrane reactorS , 1994 .

[73]  Robert L. McCormick,et al.  Preparation and characterization of Pd-Cu composite membranes for hydrogen separation , 2003 .

[74]  N. Xu,et al.  Preparation of a Palladium Composite Membrane by an Improved Electroless Plating Technique , 2000 .

[75]  Brant A. Peppley,et al.  The Steam Reforming of Methanol: Mechanism and Kinetics Compared to the Methanol Synthesis Process , 1994 .

[76]  J. Tong,et al.  Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide , 2004 .

[77]  M. Harold,et al.  Pd encapsulated and nanopore hollow fiber membranes : Synthesis and permeation studies , 2007 .

[78]  Integrated vs. sequential reaction and separation : contributions for a global analysis , 1999 .

[79]  Vito Specchia,et al.  Catalytic inorganic membrane reactors: present experience and future opportunities , 1994 .

[80]  D. Trimm,et al.  Kinetic study of steam reforming of methanol over copper-based catalysts , 1993 .

[81]  S. Ted Oyama,et al.  Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases , 2000 .

[82]  Lars-Gunnar Ekedahl,et al.  Hydrogen permeation through surface modified Pd and PdAg membranes , 2001 .

[83]  S. H. Kim,et al.  Development of a new porous metal support of metallic dense membrane for hydrogen separation , 2006 .

[84]  Yuehe Lin,et al.  Nanostructured thin palladium-silver membranes: Effects of grain size on gas permeation properties , 2001 .

[85]  R. Dittmeyer,et al.  Preparation of thin palladium membranes on a porous support with rough surface , 2007 .

[86]  Ing.Steffen Wieland,et al.  Membrane reactors for hydrogen production , 2002 .

[87]  T. Tsotsis,et al.  Isobutane dehydrogenation reaction in a packed bed catalytic membrane reactor , 1993 .

[88]  Fausto Gallucci,et al.  An experimental investigation on methanol steam reforming with oxygen addition in a flat Pd-Ag membrane reactor , 2006 .

[89]  Yu-Ming Lin,et al.  Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer , 2000 .

[90]  Shaobin Wang,et al.  Reforming of methane with carbon dioxide over Ni/Al2O3 catalysts : Effect of nickel precursor , 1998 .

[91]  J. Tong,et al.  Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation , 2005 .

[92]  S. Tosti,et al.  Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle , 2000 .

[93]  Patricio Reyes,et al.  React. Kinet. Catal. Lett. , 1974 .

[94]  W. A. Pledger,et al.  Thermolysis of hydrogen sulfide in a metal-membrane reactor , 1993 .

[95]  R. Donelson,et al.  Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation , 2006 .

[96]  S. Irusta,et al.  Different oxides used as diffusion barriers in composite hydrogen permeable membranes , 2006 .

[97]  Heather M. Coleman,et al.  Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications , 2002 .

[98]  Robert E. Buxbaum,et al.  Palladium-catalyzed oxidative diffusion for tritium extraction from breeder-blanket fluids at low concentrations , 1986 .

[99]  N. Itoh,et al.  Solubility of hydrogen in amorphous Pd1−xSix alloys as hydrogen permeable membranes , 1997 .

[100]  N. Itoh,et al.  Hydrogen permeation through palladium-coated amorphous ZrMNi (M = Ti, Hf) alloy membranes , 2002 .

[101]  T. Kai,et al.  Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys , 2001 .

[102]  Y. S. Lin,et al.  Selective oxidation of ethane to ethylene in a dense tubular membrane reactor , 2002 .

[103]  Hitoshi Watanabe,et al.  A Feasibility Study of the Catalytic Reduction Method For Tritium Recovery from Tritiated Water Tritium Systems , 1984 .

[104]  Haruhiko Ohya,et al.  Separation of hydrogen from thermochemical processes using zirconia-silica composite membrane , 1994 .

[105]  L. Barelli,et al.  Hydrogen production through sorption-enhanced steam methane reforming and membrane technology : A review , 2008 .

[106]  K. Tomishige,et al.  Studies on Carbon Deposition in CO2Reforming of CH4over Nickel–Magnesia Solid Solution Catalysts , 1999 .

[107]  A. Basile,et al.  The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies , 2001 .

[108]  N. Itoh,et al.  Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor , 2003 .

[109]  Toshimitsu Suzuki Future Opportunities in Catalytic and Separation Technology : M. Misono, Y. Moro-oka and S. Kimura (Eds.) Elsevier, Amsterdam, 1990, 382 pp, ISBN 0444885927, US$179.50 , 1992 .

[110]  Kang Li Ceramic Membranes for Separation and Reaction , 2007 .

[111]  M. Mundschau Hydrogen Separation Using Dense Composite Membranes: Part 1 Fundamentals , 2009 .

[112]  G. Manzolini,et al.  Innovative membrane reformer for hydrogen production applied to PEM micro-cogeneration: simulation model and thermodynamic analysis , 2008 .

[113]  Michael Stoukides,et al.  Solid-Electrolyte Membrane Reactors: Current Experience and Future Outlook , 2000 .

[114]  R. Hughes,et al.  The catalytic dehydrogenation of isobutane to isobutene in a palladium/silver composite membrane reactor , 2005 .

[115]  Jesús Arauzo,et al.  Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids. , 2007 .

[116]  S. Cordiner,et al.  Low temperature ethanol steam reforming in a Pd-Ag membrane reactor , 2008 .

[117]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[118]  S. Tosti,et al.  Long-term tests of Pd-Ag thin wall permeator tube , 2006 .

[119]  J. Dalmon,et al.  Catalysis in Membrane Reactors: What About the Catalyst? , 2004 .

[120]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model , 1999 .

[121]  A. Basile,et al.  New Ti-Ni dense membranes with low palladium content , 2007 .

[122]  Xenophon E. Verykios,et al.  Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts , 2003 .

[123]  K. Kusakabe,et al.  Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation , 1994 .

[124]  Stefano Cavallaro,et al.  Hydrogen Production by Steam Reforming of Ethanol: A Two Step Process , 2000 .

[125]  V. V. Kondrat'ev,et al.  Hydrogen diffusion in disordered metals and alloys , 2003 .

[126]  S. Nam,et al.  Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition , 1999 .

[127]  R. Buxbaum MEMBRANE REACTOR ADVANTAGES FOR METHANOL REFORMING AND SIMILAR REACTIONS , 1999 .

[128]  K. Eguchi,et al.  Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides , 1998 .

[129]  Yongdan Li,et al.  Electroless plating synthesis, characterization and permeation properties of Pd–Cu membranes supported on ZrO2 modified porous stainless steel , 2005 .

[130]  Huey-Ing Chen,et al.  Preparation of hydrogen-permselective palladium-silver alloy composite membranes by electroless co-deposition , 2003 .

[131]  J. Tong,et al.  A novel method for the preparation of thin dense Pd membrane on macroporous stainless steel tube filter , 2005 .

[132]  T. Perng,et al.  A brief review note on mechanisms of hydrogen entry into metals , 2003 .

[133]  Xenophon E. Verykios,et al.  Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts , 2007 .

[134]  Kamalesh K. Sirkar,et al.  Membrane in a reactor: A functional perspective , 1999 .

[135]  S. Tosti,et al.  The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances , 2007 .

[136]  S. Elnashaie,et al.  Fluidized bed reactors without and with selective membranes for the catalytic dehydrogenation of ethylbenzene to styrene , 1995 .

[137]  N. Sato,et al.  The water gas shift reaction assisted by a palladium membrane reactor , 1991 .

[138]  P. L. Lee,et al.  Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction , 2001 .

[139]  Freek Kapteijn,et al.  Zeolite based films, membranes and membrane reactors: Progress and prospects , 2006 .

[140]  M. Tekić,et al.  Applicability of a double-membrane reactor for thermal decomposition of water: a computer analysis , 1999 .

[141]  J. C. Amphlett,et al.  Hydrogen production by the catalytic steam reforming of methanol: Part 2: Kinetics of methanol decomposition using girdler G66B catalyst , 1985 .

[142]  Geert Versteeg,et al.  High-temperature membrane reactors: potential and problems , 1999 .

[143]  M. H. Armbruster The Solubility of Hydrogen at Low Pressure in Iron, Nickel and Certain Steels at 400 to 600° , 1943 .

[144]  Satoshi Hamakawa,et al.  CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method , 1999 .

[145]  Yuehe Lin,et al.  Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes , 1995 .

[146]  Angelo Basile,et al.  Membrane reactor for the production of hydrogen and higher hydrocarbons from methane over Ru/Al2O3 catalyst , 2003 .

[147]  M. Sheintuch,et al.  Observations, modeling and optimization of yield, selectivity and activity during dehydrogenation of isobutane and propane in a Pd membrane reactor , 1996 .

[148]  M. Huff,et al.  Oxidation of isobutane over supported noble metal catalysts in a palladium membrane reactor , 2000 .

[149]  Henricus J.M. Bouwmeester,et al.  Dense ceramic membranes for methane conversion , 2003 .

[150]  L. Lorenzen,et al.  The Dehydrogenation of 2-butanol in a Pd-Ag Membrane Reactor. , 2002 .

[151]  C. Nishimura,et al.  V–Ni alloy membranes for hydrogen purification , 2002 .

[152]  K. Takanabe,et al.  Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate , 2004 .

[153]  Does thermodynamics improve processing when chemical reaction is integrated with physical separation in binary ideal mixtures , 1997 .

[154]  Fausto Gallucci,et al.  Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor , 2005 .

[155]  Shigeyuki Uemiya,et al.  State-of-the-Art of Supported Metal Membranes for Gas Separation , 1999 .

[156]  A. Basile,et al.  An Ru-based catalytic membrane reactor for dry reforming of methane : its catalytic performance compared with tubular packed bed reactors , 2003 .

[157]  S. Tosti,et al.  Acetic acid steam reforming in a Pd-Ag membrane reactor : The effect of the catalytic bed pattern , 2008 .

[158]  Il-soo Kim,et al.  Purifier-integrated methanol reformer for fuel cell vehicles , 2000 .

[159]  A. Baiker,et al.  Dehydrogenation of methylcyclohexane to toluene in a pilot-scale membrane reactor , 1997 .

[160]  V. Gryaznov METAL CONTAINING MEMBRANES FOR THE PRODUCTION OF ULTRAPURE HYDROGEN AND THE RECOVERY OF HYDROGEN ISOTOPES , 2000 .

[161]  E. Drioli,et al.  Catalytic ceramic membrane reactor design for hydrogen separation from inert gas via oxidation , 1995 .

[162]  Thijs Peters,et al.  High pressure performance of thin Pd–23%Ag/stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux , 2008 .

[163]  Shudong Wang,et al.  Characterization and performance of a ZnO–ZnCr2O4/CeO2–ZrO2 monolithic catalyst for methanol auto-thermal reforming process , 2008 .

[164]  H. P. Hsieh,et al.  Inorganic Membranes for Separation and Reaction , 1996 .

[165]  J. A. Ritter,et al.  State‐of‐the‐Art Adsorption and Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries , 2007 .

[166]  L. Lorenzen,et al.  Developing a heating procedure to optimise hydrogen permeance through Pd-Ag membranes of thickness less than 2.2 μm , 2002 .

[167]  Roland Dittmeyer,et al.  Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium , 2001 .

[168]  G. Dogu,et al.  Preparation and characterization of palladium-plated porous glass for hydrogen enrichment , 2005 .

[169]  Bernard P. A. Grandjean,et al.  Catalytic palladium‐based membrane reactors: A review , 1991 .

[170]  A. Chakma,et al.  A simulation study on the thermal decomposition of hydrogen sulfide in a membrane reactor , 1995 .

[171]  T. Maschmeyer,et al.  Mesoporous Membranes—A Brief Overview of Recent Developments , 2004 .

[172]  Fausto Gallucci,et al.  Ti–Ni–Pd dense membranes—The effect of the gas mixtures on the hydrogen permeation , 2008 .

[173]  Michael Curt Elwenspoek,et al.  Fabrication and characterization of dual sputtered Pd-Cu alloy films for hydrogen separation membranes , 2004 .