Stability of the Feasible Set Mapping in Convex Semi-Infinite Programming

In this paper we approach the stability analysis of the feasible set mapping in convex semi-infinite programming for an arbitrary index set. More precisely, we establish its closedness and study the semicontinuity, in the sense of Berge, of this multivalued mapping- A certain metric is proposed in order to measure the distance between nominal and perturbed problems. Since we do not require any structure to the index set, our results cover the ordinary convex programming problem.