A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients

In this paper, we first propose an unconditionally stable implicit difference scheme for solving generalized time-space fractional diffusion equations (GTSFDEs) with variable coefficients. The numerical scheme utilizes the $L1$-type formula for the generalized Caputo fractional derivative in time discretization and the second-order weighted and shifted Grunwald difference (WSGD) formula in spatial discretization, respectively. Theoretical results and numerical tests are conducted to verify the $(2 - \gamma)$-order and 2-order of temporal and spatial convergence with $\gamma\in(0,1]$ the order of Caputo fractional derivative, respectively. The fast sum-of-exponential approximation of the generalized Caputo fractional derivative and Toeplitz-like coefficient matrices are also developed to accelerate the proposed implicit difference scheme. Numerical experiments show the effectiveness of the proposed numerical scheme and its good potential for large-scale simulation of GTSFDEs.

[1]  I. Podlubny Fractional differential equations , 1998 .

[2]  Can Li,et al.  A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative , 2011, 1109.2345.

[3]  Stefano Serra Capizzano,et al.  Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..

[4]  Weihua Deng,et al.  Numerical approaches to the functional distribution of anomalous diffusion with both traps and flights , 2017, Adv. Comput. Math..

[5]  Siu-Long Lei,et al.  High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives , 2015, Numerical Algorithms.

[6]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[7]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[8]  Bangti Jin,et al.  Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview , 2018, Computer Methods in Applied Mechanics and Engineering.

[9]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[10]  Wei Jiang,et al.  An efficient Chebyshev-tau method for solving the space fractional diffusion equations , 2013, Appl. Math. Comput..

[11]  Siu-Long Lei,et al.  A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations , 2017, Numerical Algorithms.

[12]  Ali H. Bhrawy,et al.  Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method , 2013 .

[13]  Xian-Ming Gu,et al.  A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation , 2018, J. Comput. Appl. Math..

[14]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[15]  Hong Wang,et al.  Fast Iterative Solvers for Linear Systems Arising from Time-Dependent Space-Fractional Diffusion Equations , 2016, SIAM J. Sci. Comput..

[16]  Zhi-Zhong Sun,et al.  The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations , 2017, J. Sci. Comput..

[17]  Xiao-Qing Jin,et al.  Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..

[18]  H. Jafari,et al.  A Numerical Approach to Fokker-Planck Equation with Space-and Time-Fractional and Non Fractional Derivatives , 2022 .

[19]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[20]  Yufeng Xu,et al.  Numerical and analytical solutions of new generalized fractional diffusion equation , 2013, Comput. Math. Appl..

[21]  Cui-Cui Ji,et al.  Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation , 2016, J. Sci. Comput..

[22]  Xiangcheng Zheng,et al.  Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension , 2018, Appl. Math. Comput..

[23]  Huazhong Tang,et al.  High-Order Accurate Runge-Kutta (Local) Discontinuous Galerkin Methods for One- and Two-Dimensional Fractional Diffusion Equations , 2012 .

[24]  X. Jia,et al.  Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient , 2017 .

[25]  Michael K. Ng,et al.  A fast solver for multidimensional time-space fractional diffusion equation with variable coefficients , 2019, Comput. Math. Appl..

[26]  K. Burrage,et al.  A new fractional finite volume method for solving the fractional diffusion equation , 2014 .

[27]  Michael K. Ng,et al.  Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients , 2018, J. Sci. Comput..

[28]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[29]  Hong Wang,et al.  A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation , 2018, Journal of Scientific Computing.

[30]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[31]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[32]  W. Deng,et al.  High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion: Algorithm and Models for Anomalous Diffusion , 2018 .

[33]  C. Gorman,et al.  PI , 2021, Encyclopedic Dictionary of Archaeology.

[34]  Jiwei Zhang,et al.  Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..

[35]  Fu-Rong Lin,et al.  The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation , 2020, J. Comput. Appl. Math..

[36]  Michael K. Ng,et al.  Efficient preconditioner of one-sided space fractional diffusion equation , 2018 .

[37]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[38]  Anatoly A. Alikhanov,et al.  A Time-Fractional Diffusion Equation with Generalized Memory Kernel in Differential and Difference Settings with Smooth Solutions , 2017, Comput. Methods Appl. Math..

[39]  Israel Gohberg,et al.  Circulants, displacements and decompositions of matrices , 1992 .

[40]  Zhi-Zhong Sun,et al.  A fourth-order approximation of fractional derivatives with its applications , 2015, J. Comput. Phys..

[41]  Fawang Liu,et al.  Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation , 2015, Appl. Math. Comput..

[42]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[43]  Minghua Chen,et al.  High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation , 2016, J. Sci. Comput..

[44]  I. Turner,et al.  Second-order approximation for the space fractional diffusion equation with variable coefficient , 2015 .

[45]  Xiao-Qing Jin,et al.  Preconditioned iterative methods for space-time fractional advection-diffusion equations , 2015, J. Comput. Phys..

[46]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[47]  George Em Karniadakis,et al.  Efficient Multistep Methods for Tempered Fractional Calculus: Algorithms and Simulations , 2018, SIAM J. Sci. Comput..

[48]  Hong Wang,et al.  A preconditioned fast quadratic spline collocation method for two-sided space-fractional partial differential equations , 2019, J. Comput. Appl. Math..

[49]  Seakweng Vong,et al.  A note on the stability of a second order finite difference scheme for space fractional diffusion equations , 2014 .

[50]  M. Ng,et al.  An Efficient Second-Order Convergent Scheme for One-Side Space Fractional Diffusion Equations with Variable Coefficients , 2019, Communications on Applied Mathematics and Computation.

[51]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[52]  Well-posedness and numerical approximation of tempered fractional terminal value problems , 2017, 1705.03969.

[53]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[54]  Maike A. F. dos Santos Mittag–Leffler Memory Kernel in Lévy Flights , 2019, Mathematics.

[55]  Zhiqiang Zhou,et al.  Convergence analysis of moving finite element methods for space fractional differential equations , 2014, J. Comput. Appl. Math..

[56]  D. Benson,et al.  Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .

[57]  Aslanbek Kh Khibiev,et al.  Устойчивость и сходимость разностных схем для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти , 2019 .

[58]  Seakweng Vong,et al.  On a second order scheme for space fractional diffusion equations with variable coefficients , 2016, Applied Numerical Mathematics.

[59]  Cécile Piret,et al.  A Chebyshev PseudoSpectral Method to Solve the Space-Time Tempered Fractional Diffusion Equation , 2014, SIAM J. Sci. Comput..

[60]  H. Kantz,et al.  Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel , 2015 .

[61]  Meng Li,et al.  A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations , 2018, J. Comput. Phys..

[62]  Weihua Deng,et al.  Boundary Problems for the Fractional and Tempered Fractional Operators , 2017, Multiscale Model. Simul..

[63]  E. Barkai,et al.  Tempered fractional Feynman-Kac equation: Theory and examples. , 2016, Physical review. E.