暂无分享,去创建一个
[1] I. Podlubny. Fractional differential equations , 1998 .
[2] Can Li,et al. A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative , 2011, 1109.2345.
[3] Stefano Serra Capizzano,et al. Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..
[4] Weihua Deng,et al. Numerical approaches to the functional distribution of anomalous diffusion with both traps and flights , 2017, Adv. Comput. Math..
[5] Siu-Long Lei,et al. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives , 2015, Numerical Algorithms.
[6] Mark M. Meerschaert,et al. A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..
[7] Zhimin Zhang,et al. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.
[8] Bangti Jin,et al. Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview , 2018, Computer Methods in Applied Mechanics and Engineering.
[9] Bangti Jin,et al. An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.
[10] Wei Jiang,et al. An efficient Chebyshev-tau method for solving the space fractional diffusion equations , 2013, Appl. Math. Comput..
[11] Siu-Long Lei,et al. A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations , 2017, Numerical Algorithms.
[12] Ali H. Bhrawy,et al. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method , 2013 .
[13] Xian-Ming Gu,et al. A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation , 2018, J. Comput. Appl. Math..
[14] Jose L. Gracia,et al. Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..
[15] Hong Wang,et al. Fast Iterative Solvers for Linear Systems Arising from Time-Dependent Space-Fractional Diffusion Equations , 2016, SIAM J. Sci. Comput..
[16] Zhi-Zhong Sun,et al. The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations , 2017, J. Sci. Comput..
[17] Xiao-Qing Jin,et al. Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..
[18] H. Jafari,et al. A Numerical Approach to Fokker-Planck Equation with Space-and Time-Fractional and Non Fractional Derivatives , 2022 .
[19] Mark M. Meerschaert,et al. Tempered fractional calculus , 2015, J. Comput. Phys..
[20] Yufeng Xu,et al. Numerical and analytical solutions of new generalized fractional diffusion equation , 2013, Comput. Math. Appl..
[21] Cui-Cui Ji,et al. Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation , 2016, J. Sci. Comput..
[22] Xiangcheng Zheng,et al. Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension , 2018, Appl. Math. Comput..
[23] Huazhong Tang,et al. High-Order Accurate Runge-Kutta (Local) Discontinuous Galerkin Methods for One- and Two-Dimensional Fractional Diffusion Equations , 2012 .
[24] X. Jia,et al. Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient , 2017 .
[25] Michael K. Ng,et al. A fast solver for multidimensional time-space fractional diffusion equation with variable coefficients , 2019, Comput. Math. Appl..
[26] K. Burrage,et al. A new fractional finite volume method for solving the fractional diffusion equation , 2014 .
[27] Michael K. Ng,et al. Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients , 2018, J. Sci. Comput..
[28] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[29] Hong Wang,et al. A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation , 2018, Journal of Scientific Computing.
[30] M. Meerschaert,et al. Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .
[31] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[32] W. Deng,et al. High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion: Algorithm and Models for Anomalous Diffusion , 2018 .
[33] C. Gorman,et al. PI , 2021, Encyclopedic Dictionary of Archaeology.
[34] Jiwei Zhang,et al. Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..
[35] Fu-Rong Lin,et al. The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation , 2020, J. Comput. Appl. Math..
[36] Michael K. Ng,et al. Efficient preconditioner of one-sided space fractional diffusion equation , 2018 .
[37] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[38] Anatoly A. Alikhanov,et al. A Time-Fractional Diffusion Equation with Generalized Memory Kernel in Differential and Difference Settings with Smooth Solutions , 2017, Comput. Methods Appl. Math..
[39] Israel Gohberg,et al. Circulants, displacements and decompositions of matrices , 1992 .
[40] Zhi-Zhong Sun,et al. A fourth-order approximation of fractional derivatives with its applications , 2015, J. Comput. Phys..
[41] Fawang Liu,et al. Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation , 2015, Appl. Math. Comput..
[42] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[43] Minghua Chen,et al. High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation , 2016, J. Sci. Comput..
[44] I. Turner,et al. Second-order approximation for the space fractional diffusion equation with variable coefficient , 2015 .
[45] Xiao-Qing Jin,et al. Preconditioned iterative methods for space-time fractional advection-diffusion equations , 2015, J. Comput. Phys..
[46] Siu-Long Lei,et al. A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..
[47] George Em Karniadakis,et al. Efficient Multistep Methods for Tempered Fractional Calculus: Algorithms and Simulations , 2018, SIAM J. Sci. Comput..
[48] Hong Wang,et al. A preconditioned fast quadratic spline collocation method for two-sided space-fractional partial differential equations , 2019, J. Comput. Appl. Math..
[49] Seakweng Vong,et al. A note on the stability of a second order finite difference scheme for space fractional diffusion equations , 2014 .
[50] M. Ng,et al. An Efficient Second-Order Convergent Scheme for One-Side Space Fractional Diffusion Equations with Variable Coefficients , 2019, Communications on Applied Mathematics and Computation.
[51] A. Wathen,et al. Iterative Methods for Toeplitz Systems , 2005 .
[52] Well-posedness and numerical approximation of tempered fractional terminal value problems , 2017, 1705.03969.
[53] Michael K. Ng,et al. Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..
[54] Maike A. F. dos Santos. Mittag–Leffler Memory Kernel in Lévy Flights , 2019, Mathematics.
[55] Zhiqiang Zhou,et al. Convergence analysis of moving finite element methods for space fractional differential equations , 2014, J. Comput. Appl. Math..
[56] D. Benson,et al. Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .
[57] Aslanbek Kh Khibiev,et al. Устойчивость и сходимость разностных схем для уравнения диффузии дискретно-распределенного порядка с обобщенными функциями памяти , 2019 .
[58] Seakweng Vong,et al. On a second order scheme for space fractional diffusion equations with variable coefficients , 2016, Applied Numerical Mathematics.
[59] Cécile Piret,et al. A Chebyshev PseudoSpectral Method to Solve the Space-Time Tempered Fractional Diffusion Equation , 2014, SIAM J. Sci. Comput..
[60] H. Kantz,et al. Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel , 2015 .
[61] Meng Li,et al. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations , 2018, J. Comput. Phys..
[62] Weihua Deng,et al. Boundary Problems for the Fractional and Tempered Fractional Operators , 2017, Multiscale Model. Simul..
[63] E. Barkai,et al. Tempered fractional Feynman-Kac equation: Theory and examples. , 2016, Physical review. E.