Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators

We present measurements of the temperature-dependent frequency shift of five niobium superconducting coplanar waveguide microresonators with center strip widths ranging from 3 to 50 µm, taken at temperatures in the range of 100–800 mK, far below the 9.2 K transition temperature of niobium. These data agree well with the two-level system (TLS) theory. Fits to this theory provide information on the number of TLSs that interact with each resonator geometry. The geometrical scaling indicates a surface distribution of TLSs and the data are consistent with a TLS surface layer thickness of the order of a few nanometers, as might be expected for a native oxide layer.

[1]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[2]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[3]  R. Barends,et al.  Niobium and Tantalum High Q Resonators for Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[4]  Jonas Zmuidzinas,et al.  Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators , 2008 .

[5]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[6]  T. M. Klapwijk,et al.  Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy , 2008 .

[7]  H. Leduc,et al.  Experimental study of the kinetic inductance fraction of superconducting coplanar waveguide , 2006 .

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[10]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[11]  A. Cleland,et al.  Nanoscale radio-frequency thermometry , 2003 .

[12]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[13]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[14]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[15]  Stafford Withington,et al.  Superconducting kinetic inductance detectors for astrophysics , 2007 .

[16]  W A Phillips Two-level states in glasses , 1987 .

[17]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[18]  Jonas Zmuidzinas,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[19]  Jonas Zmuidzinas,et al.  Multiplexable Kinetic Inductance Detectors , 2002 .

[20]  B. Bumble,et al.  Recent Results of a New Microwave SQUID Multiplexer , 2008 .